Di Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8390838/publications.pdf

Version: 2024-02-01

612 papers

31,019 citations

88 h-index 137 g-index

621 all docs

621 docs citations

times ranked

621

25711 citing authors

#	Article	IF	CITATIONS
1	Fluorineâ€Free Synthesis of Highâ€Purity Ti ₃ C ₂ T _{<i>x</i>} (T=OH, O) via Alkali Treatment. Angewandte Chemie - International Edition, 2018, 57, 6115-6119.	13.8	809
2	Reinforcement with graphene nanosheets in aluminum matrix composites. Scripta Materialia, 2012, 66, 594-597.	5.2	738
3	Bioâ€Inspired Evaporation Through Plasmonic Film of Nanoparticles at the Airâ€"Water Interface. Small, 2014, 10, 3234-3239.	10.0	418
4	Enhanced Mechanical Properties of Graphene (Reduced Graphene Oxide)/Aluminum Composites with a Bioinspired Nanolaminated Structure. Nano Letters, 2015, 15, 8077-8083.	9.1	366
5	The use of flake powder metallurgy to produce carbon nanotube (CNT)/aluminum composites with a homogenous CNT distribution. Carbon, 2012, 50, 1993-1998.	10.3	343
6	Biomorphic mineralization: From biology to materials. Progress in Materials Science, 2009, 54, 542-659.	32.8	313
7	"Egg-Box―Assisted Fabrication of Porous Carbon with Small Mesopores for High-Rate Electric Double Layer Capacitors. ACS Nano, 2015, 9, 11225-11233.	14.6	291
8	Electromagnetic wave absorption properties of porous carbon/Co nanocomposites. Applied Physics Letters, 2008, 93, .	3.3	271
9	Synthesis and properties of magnetic Fe3O4-activated carbon nanocomposite particles for dye removal. Materials Letters, 2008, 62, 645-647.	2.6	268
10	MXenes as emerging nanomaterials in water purification and environmental remediation. Science of the Total Environment, 2022, 811, 152280.	8.0	255
11	Artificial Inorganic Leafs for Efficient Photochemical Hydrogen Production Inspired by Natural Photosynthesis. Advanced Materials, 2010, 22, 951-956.	21.0	244
12	Adsorption of copper ions from aqueous solution by citric acid modified soybean straw. Journal of Hazardous Materials, 2008, 153, 300-308.	12.4	238
13	Effects of degree of deformation on the microstructure, mechanical properties and texture of hybrid-reinforced titanium matrix composites. Acta Materialia, 2012, 60, 2656-2667.	7.9	230
14	Graphene-and-Copper Artificial Nacre Fabricated by a Preform Impregnation Process: Bioinspired Strategy for Strengthening-Toughening of Metal Matrix Composite. ACS Nano, 2015, 9, 6934-6943.	14.6	230
15	Aligning graphene in bulk copper: Nacre-inspired nanolaminated architecture coupled with in-situ processing for enhanced mechanical properties and high electrical conductivity. Carbon, 2017, 117, 65-74.	10.3	230
16	Bioinspired Engineering of Thermal Materials. Advanced Materials, 2015, 27, 428-463.	21.0	225
17	Bioinspired Multifunctional Paper-Based rGO Composites for Solar-Driven Clean Water Generation. ACS Applied Materials & Driven Clean Water Generation.	8.0	223
18	Bioinspired Hierarchical Surface Structures with Tunable Wettability for Regulating Bacteria Adhesion. ACS Nano, 2015, 9, 10664-10672.	14.6	219

#	Article	IF	Citations
19	Sonochemical synthesis of TiO2 nanoparticles on graphene for use as photocatalyst. Ultrasonics Sonochemistry, 2011, 18, 1082-1090.	8.2	218
20	Generalized 3D Printing of Graphene-Based Mixed-Dimensional Hybrid Aerogels. ACS Nano, 2018, 12, 3502-3511.	14.6	214
21	In situ technique for synthesizing (TiB+TiC)/Ti composites. Scripta Materialia, 1999, 41, 39-46.	5.2	211
22	Novel Photoanode Structure Templated from Butterfly Wing Scales. Chemistry of Materials, 2009, 21, 33-40.	6.7	211
23	Simultaneously enhancing the strength, ductility and conductivity of copper matrix composites with graphene nanoribbons. Carbon, 2017 , 118 , 250 - 260 .	10.3	211
24	Synthesis of WO ₃ @Graphene composite for enhanced photocatalytic oxygen evolution from water. RSC Advances, 2012, 2, 1356-1363.	3.6	205
25	Hierarchical Porous Carbonized Lotus Seedpods for Highly Efficient Solar Steam Generation. Chemistry of Materials, 2018, 30, 6217-6221.	6.7	204
26	Control of Threeâ€Dimensional Cell Adhesion by the Chirality of Nanofibers in Hydrogels. Angewandte Chemie - International Edition, 2014, 53, 7789-7793.	13.8	203
27	Enhanced Lightâ∈Harvesting and Photocatalytic Properties in <i>Morph</i> â€TiO ₂ from Greenâ€Leaf Biotemplates. Advanced Functional Materials, 2009, 19, 45-56.	14.9	200
28	Grafting of thermo-responsive polymer inside mesoporous silica with large pore size using ATRP and investigation of its use in drug release. Journal of Materials Chemistry, 2007, 17, 2428.	6.7	193
29	Balanced strength and ductility in CNT/Al composites achieved by flake powder metallurgy via shift-speed ball milling. Composites Part A: Applied Science and Manufacturing, 2017, 96, 57-66.	7.6	192
30	N-doped porous carbon with magnetic particles formed in situ for enhanced Cr(VI) removal. Water Research, 2013, 47, 4188-4197.	11.3	188
31	Extreme rejuvenation and softening in a bulk metallic glass. Nature Communications, 2018, 9, 560.	12.8	186
32	A high-performance Bi ₂ WO ₆ â€"graphene photocatalyst for visible light-induced H ₂ and O ₂ generation. Nanoscale, 2014, 6, 2186-2193.	5.6	179
33	3D-Structured Carbonized Sunflower Heads for Improved Energy Efficiency in Solar Steam Generation. ACS Applied Materials & Samp; Interfaces, 2020, 12, 2171-2179.	8.0	178
34	Hierarchically porous ZnO with high sensitivity and selectivity to H2S derived from biotemplates. Sensors and Actuators B: Chemical, 2009, 136, 499-509.	7.8	175
35	An approach to the uniform dispersion of a high volume fraction of carbon nanotubes in aluminum powder. Carbon, 2011, 49, 1965-1971.	10.3	173
36	Biomimetic optical materials: Integration of nature's design for manipulation of light. Progress in Materials Science, 2013, 58, 825-873.	32.8	172

#	Article	IF	Citations
37	Leaf-architectured 3D Hierarchical Artificial Photosynthetic System of Perovskite Titanates Towards CO2 Photoreduction Into Hydrocarbon Fuels. Scientific Reports, 2013, 3, 1667.	3.3	159
38	Microstructure evolution and superelastic behavior in Ti-35Nb-2Ta-3Zr alloy processed by friction stir processing. Acta Materialia, 2017, 131, 499-510.	7.9	158
39	Biotemplated Materials for Sustainable Energy and Environment: Current Status and Challenges. ChemSusChem, 2011, 4, 1344-1387.	6.8	157
40	Strengthening and toughening mechanisms in graphene-Al nanolaminated composite micro-pillars. Acta Materialia, 2017, 125, 98-108.	7.9	156
41	Synergistic strengthening effect of graphene-carbon nanotube hybrid structure in aluminum matrix composites. Carbon, 2015, 95, 419-427.	10.3	154
42	Simultaneously achieving thermal insulation and rapid water transport in sugarcane stems for efficient solar steam generation. Journal of Materials Chemistry A, 2019, 7, 9034-9039.	10.3	151
43	Sonochemical fabrication of Fe3O4 nanoparticles on reduced graphene oxide for biosensors. Ultrasonics Sonochemistry, 2013, 20, 872-880.	8.2	148
44	Hydrothermal synthesis of ZnO hollow spheres using spherobacterium as biotemplates. Microporous and Mesoporous Materials, 2007, 100, 322-327.	4.4	147
45	Ag/diatomite for highly efficient solar vapor generation under one-sun irradiation. Journal of Materials Chemistry A, 2017, 5, 17817-17821.	10.3	144
46	One step fabrication of C-doped BiVO4 with hierarchical structures for a high-performance photocatalyst under visible light irradiation. Journal of Materials Chemistry A, 2013, 1, 8367.	10.3	142
47	Uniform dispersion of graphene oxide in aluminum powder by direct electrostatic adsorption for fabrication of graphene/aluminum composites. Nanotechnology, 2014, 25, 325601.	2.6	141
48	Novel Bacteria-Templated Sonochemical Route for the in Situ One-Step Synthesis of ZnS Hollow Nanostructures. Chemistry of Materials, 2007, 19, 2144-2146.	6.7	131
49	Simple fabrication of a Fe2O3/carbon composite for use in a high-performance lithium ion battery. Carbon, 2013, 52, 565-573.	10.3	131
50	Composite structure modeling and mechanical behavior of particle reinforced metal matrix composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 597, 359-369.	5.6	131
51	Carbon-coated SnO ₂ @C with hierarchically porous structures and graphite layers inside for a high-performance lithium-ion battery. Journal of Materials Chemistry, 2012, 22, 2766-2773.	6.7	129
52	Strong and ductile carbon nanotube/aluminum bulk nanolaminated composites with two-dimensional alignment of carbon nanotubes. Scripta Materialia, 2012, 66, 331-334.	5.2	129
53	Enhanced interfacial bonding and mechanical properties in CNT/Al composites fabricated by flake powder metallurgy. Carbon, 2018, 130, 333-339.	10.3	129
54	Tailoring the structure and mechanical properties of graphene nanosheet/aluminum composites by flake powder metallurgy via shift-speed ball milling. Composites Part A: Applied Science and Manufacturing, 2018, 111, 73-82.	7.6	128

#	Article	IF	Citations
55	Enhanced thermal conductivity in diamond/aluminum composites with a tungsten interface nanolayer. Materials & Design, 2013, 47, 160-166.	5.1	127
56	Ultrahigh Electrical Conductivity of Graphene Embedded in Metals. Advanced Functional Materials, 2019, 29, 1806792.	14.9	126
57	Tailoring the Morphology of gâ€C ₃ N ₄ by Selfâ€Assembly towards High Photocatalytic Performance. ChemCatChem, 2014, 6, 3419-3425.	3.7	124
58	Microstructural characterization of TiB in in situ synthesized titanium matrix composites prepared by common casting technique. Journal of Alloys and Compounds, 2001, 327, 240-247.	5.5	119
59	HREM study of TiB/Ti interfaces in a TiB-TiC in situ composite. Scripta Materialia, 2001, 44, 1069-1075.	5.2	118
60	Highly porous graphitic materials prepared by catalytic graphitization. Carbon, 2013, 64, 132-140.	10.3	118
61	Bioâ€Inspired Photonic Materials: Prototypes and Structural Effect Designs for Applications in Solar Energy Manipulation. Advanced Functional Materials, 2018, 28, 1705309.	14.9	117
62	Metal-graphene interfaces in epitaxial and bulk systems: A review. Progress in Materials Science, 2020, 110, 100652.	32.8	114
63	Versatile Fabrication of Intact Threeâ€Dimensional Metallic Butterfly Wing Scales with Hierarchical Subâ€micrometer Structures. Angewandte Chemie - International Edition, 2011, 50, 8307-8311.	13.8	113
64	Lateral size effect of graphene on mechanical properties of aluminum matrix nanolaminated composites. Scripta Materialia, 2017, 139, 44-48.	5.2	113
65	Interface-induced strain hardening of graphene nanosheet/aluminum composites. Carbon, 2019, 146, 17-27.	10.3	113
66	Biogenic N-l-codoped TiO ₂ photocatalyst derived from kelp for efficient dye degradation. Energy and Environmental Science, 2011, 4, 172-180.	30.8	112
67	Semiconductor photocatalysts for water oxidation: current status and challenges. Physical Chemistry Chemical Physics, 2014, 16, 6810.	2.8	112
68	Microstructure and mechanical properties of cold-rolled TiNbTaZr biomedical \hat{l}^2 titanium alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 490, 421-426.	5.6	111
69	3D Microstructure-based finite element modeling of deformation and fracture of SiCp/Al composites. Composites Science and Technology, 2016, 123, 1-9.	7.8	111
70	A flake powder metallurgy approach to Al2O3/Al biomimetic nanolaminated composites with enhanced ductility. Scripta Materialia, 2011, 65, 412-415.	5.2	110
71	Quantum Dots of 1T Phase Transitional Metal Dichalcogenides Generated <i>via</i> Electrochemical Li Intercalation. ACS Nano, 2018, 12, 308-316.	14.6	110
72	Highâ€Density Hotspots Engineered by Naturally Piledâ€Up Subwavelength Structures in Threeâ€Dimensional Copper Butterfly Wing Scales for Surfaceâ€Enhanced Raman Scattering Detection. Advanced Functional Materials, 2012, 22, 1578-1585.	14.9	109

#	Article	IF	CITATIONS
73	Towards strong and stiff carbon nanotube-reinforced high-strength aluminum alloy composites through a microlaminated architecture design. Scripta Materialia, 2014, 75, 30-33.	5.2	104
74	Bioinspired Fabrication of Hierarchically Structured, pH-Tunable Photonic Crystals with Unique Transition. ACS Nano, 2013, 7, 4911-4918.	14.6	102
75	Patterned Carbon Nitride–Based Hybrid Aerogel Membranes via 3D Printing for Broadband Solar Wastewater Remediation. Advanced Functional Materials, 2018, 28, 1801121.	14.9	101
76	Highly sensitive and rapidly responding room-temperature NO2 gas sensors based on WO3 nanorods/sulfonated graphene nanocomposites. Nano Research, 2018, 11, 791-803.	10.4	98
77	The synthesis of hierarchical porous iron oxide with wood templates. Microporous and Mesoporous Materials, 2005, 85, 82-88.	4.4	97
78	Butterflies: inspiration for solar cells and sunlight water-splitting catalysts. Energy and Environmental Science, 2012, 5, 9195.	30.8	97
79	Microstructure and mechanical properties of investment casted titanium matrix composites with B4C additions. Materials Science & Department of Structural Materials: Properties, Microstructure and Processing, 2015, 628, 366-373.	5.6	97
80	Biomimetic polymeric semiconductor based hybrid nanosystems for artificial photosynthesis towards solar fuels generation via CO2 reduction. Nano Energy, 2016, 25, 128-135.	16.0	97
81	Carbon Materials Reinforced Aluminum Composites: A Review. Acta Metallurgica Sinica (English) Tj ETQq1 1 0.784	314 rgBT	18verlock
82	Construction of Selfâ€Reporting Specific Chemical Sensors with High Sensitivity. Advanced Materials, 2007, 19, 4327-4332.	21.0	95
83	Strain-rate dependent deformation mechanism of graphene-Al nanolaminated composites studied using micro-pillar compression. International Journal of Plasticity, 2018, 105, 128-140.	8.8	95
84	In Situ Depositing Silver Nanoclusters on Silk Fibroin Fibers Supports by a Novel Biotemplate Redox Technique at Room Temperature. Journal of Physical Chemistry B, 2005, 109, 17429-17434.	2.6	94
85	Fabrication of ZnO microtubes with adjustable nanopores on the walls by the templating of butterfly wing scales. Nanotechnology, 2006, 17, 840-844.	2.6	93
86	Super black and ultrathin amorphous carbon film inspired by anti-reflection architecture in butterfly wing. Carbon, 2011, 49, 877-883.	10.3	92
87	The interfacial characterization of oxidized SiC(p)/2014 Al composites. Materials Science & Description of Oxidized SiC(p)/2014 Al composites. Materials Science & Description of Oxidized SiC(p)/2014 Al composites. Materials Science & Description of Oxidized SiC(p)/2014 Al composites. Materials Science & Description of Oxidized SiC(p)/2014 Al composites. Materials Science & Description of Oxidized SiC(p)/2014 Al composites. Materials Science & Description of Oxidized SiC(p)/2014 Al composites. Materials Science & Description of Oxidized SiC(p)/2014 Al composites. Materials Science & Description of Oxidized SiC(p)/2014 Al composites. Materials Science & Description of Oxidized SiC(p)/2014 Al composites. Materials Science & Description of Oxidized SiC(p)/2014 Al composites. Materials Science & Description of Oxidized SiC(p)/2014 Al composites. Materials Science & Description of Oxidized SiC(p)/2014 Al composites. Materials Science & Description of Oxidized SiC(p)/2014 Al composite SiC	5.6	91
88	3D Network Magnetophotonic Crystals Fabricated on <i>Morpho</i> Butterfly Wing Templates. Advanced Functional Materials, 2012, 22, 2072-2080.	14.9	91
89	Infrared Detection Based on Localized Modification of <i>Morpho</i> Butterfly Wings. Advanced Materials, 2015, 27, 1077-1082.	21.0	90
90	Butterfly wing architecture assisted CdS/Au/TiO2 Z-scheme type photocatalytic water splitting. International Journal of Hydrogen Energy, 2013, 38, 8244-8253.	7.1	89

#	Article	IF	Citations
91	Particle size effect on the interfacial properties of SiC particle-reinforced Al-Cu-Mg composites. Materials Science & Dipineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 711, 643-649.	5.6	89
92	Fabrication of diamond/aluminum composites by vacuum hot pressing: Process optimization and thermal properties. Composites Part B: Engineering, 2013, 47, 173-180.	12.0	87
93	Bioinspired Hierarchical Tin Oxide Scaffolds for Enhanced Gas Sensing Properties. Journal of Physical Chemistry C, 2012, 116, 10274-10281.	3.1	84
94	A NiCo2S4 /hierarchical porous carbon for high performance asymmetrical supercapacitor. Journal of Power Sources, 2019, 427, 138-144.	7.8	83
95	Achieving Rich and Active Alkaline Hydrogen Evolution Heterostructures via Interface Engineering on 2D 1Tâ€MoS ₂ Quantum Sheets. Advanced Functional Materials, 2020, 30, 2000551.	14.9	83
96	Synthesis of Cu-doped WO3 materials with photonic structures for high performance sensors. Journal of Materials Chemistry, 2010, 20, 9126.	6.7	82
97	Strong and ductile particulate reinforced ultrafine-grained metallic composites fabricated by flake powder metallurgy. Scripta Materialia, 2013, 68, 555-558.	5.2	82
98	Graphite film/aluminum laminate composites with ultrahigh thermal conductivity for thermal management applications. Materials and Design, 2016, 90, 508-515.	7.0	82
99	Enhanced strengthening and hardening via self-stabilized dislocation network in additively manufactured metals. Materials Today, 2021, 50, 79-88.	14.2	82
100	Cellulose Nanocrystals/Polyacrylamide Composites of High Sensitivity and Cycling Performance To Gauge Humidity. ACS Applied Materials & Samp; Interfaces, 2017, 9, 18231-18237.	8.0	81
101	Design of an efficient flake powder metallurgy route to fabricate CNT/6061Al composites. Materials and Design, 2018, 142, 288-296.	7.0	81
102	Leaf-inspired hierarchical porous CdS/Au/N-TiO2 heterostructures for visible light photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2014, 147, 221-228.	20.2	80
103	A predictive model for interfacial thermal conductance in surface metallized diamond aluminum matrix composites. Materials & Design, 2014, 55, 257-262.	5.1	78
104	High permittivity and microwave absorption of porous graphitic carbons encapsulating Fe nanoparticles. Composites Science and Technology, 2012, 72, 1632-1636.	7.8	77
105	Morphology Genetic Materials Templated from Natural Species. Advanced Materials, 2015, 27, 464-478.	21.0	77
106	Synthesis of Biomorphous Nickel Oxide from a Pinewood Template and Investigation on a Hierarchical Porous Structure. Journal of the American Ceramic Society, 2006, 89, 662-665.	3.8	76
107	Poly(N,N-dimethylaminoethyl methacrylate) modification of activated carbon for copper ions removal. Materials Chemistry and Physics, 2009, 113, 784-789.	4.0	76
108	Two-Dimensional Nanosheets by Rapid and Efficient Microwave Exfoliation of Layered Materials. Chemistry of Materials, 2018, 30, 5932-5940.	6.7	76

#	Article	IF	CITATIONS
109	Fluorine-free Ti ₃ C ₂ T _x (T = O, OH) nanosheets (â^1/450–100 nm) for nitrogen fixation under ambient conditions. Journal of Materials Chemistry A, 2019, 7, 14462-14465.	10.3	76
110	Synthesis of biomorphic ZnO interwoven microfibers using eggshell membrane as the biotemplate. Materials Letters, 2007, 61, 2714-2717.	2.6	75
111	Carbon nitride nanosheets as visible light photocatalytic initiators and crosslinkers for hydrogels with thermoresponsive turbidity. Journal of Materials Chemistry A, 2017, 5, 8933-8938.	10.3	75
112	Creep rupture life of in situ synthesized (TiB+TiC)/Ti matrix composites. Scripta Materialia, 2001, 44, 2449-2455.	5.2	74
113	Inspiration from butterfly and moth wing scales: Characterization, modeling, and fabrication. Progress in Materials Science, 2015, 68, 67-96.	32.8	74
114	Back stress in strain hardening of carbon nanotube/aluminum composites. Materials Research Letters, 2018, 6, 113-120.	8.7	74
115	Regain Strain-Hardening in High-Strength Metals by Nanofiller Incorporation at Grain Boundaries. Nano Letters, 2018, 18, 6255-6264.	9.1	74
116	Microstructure evolution and superelasticity of layer-like NiTiNb porous metal prepared by eutectic reaction. Acta Materialia, 2018, 143, 214-226.	7.9	73
117	A Scalable Nickel–Cellulose Hybrid Metamaterial with Broadband Light Absorption for Efficient Solar Distillation. Advanced Materials, 2020, 32, e1907975.	21.0	73
118	Ultralight, flexible carbon hybrid aerogels from bacterial cellulose for strong microwave absorption. Carbon, 2020, 162, 283-291.	10.3	71
119	Controlled fabrication of Si nanoparticles on graphene sheets for Li-ion batteries. RSC Advances, 2013, 3, 6141.	3.6	69
120	Enhanced load transfer by designing mechanical interfacial bonding in carbon nanotube reinforced aluminum composites. Carbon, 2019, 146, 155-161.	10.3	69
121	Thermal properties of in situ grown graphene reinforced copper matrix laminated composites. Journal of Alloys and Compounds, 2019, 771, 228-237.	5.5	69
122	Biomimetic zinc oxide replica with structural color using butterfly (Ideopsis similis) wings as templates. Bioinspiration and Biomimetics, 2006, 1, 89-95.	2.9	68
123	Controllable synthesis and gas response of biomorphic SnO2 with architecture hierarchy of butterfly wings. Sensors and Actuators B: Chemical, 2010, 145, 39-45.	7.8	68
124	Biomorphic porous graphitic carbon for electromagnetic interference shielding. Journal of Materials Chemistry, 2012, 22, 21183.	6.7	68
125	Enhanced dislocation obstruction in nanolaminated graphene/Cu composite as revealed by stress relaxation experiments. Scripta Materialia, 2017, 131, 67-71.	5.2	68
126	Strengthening and deformation mechanisms in nanolaminated graphene-Al composite micro-pillars affected by graphene in-plane sizes. International Journal of Plasticity, 2019, 116, 265-279.	8.8	68

#	Article	lF	Citations
127	Biomorphic Al2O3 fibers synthesized using cotton as bio-templates. Scripta Materialia, 2005, 53, 893-897.	5.2	67
128	Morphosynthesis of hierarchical ZnO replica using butterfly wing scales as templates. Microporous and Mesoporous Materials, 2006, 92, 227-233.	4.4	67
129	Effect of volume fraction of reinforcement on room temperature tensile property of in situ (TiB+TiC)/Ti matrix composites. Materials & Design, 2006, 27, 494-498.	5.1	67
130	Optical Functional Materials Inspired by Biology. Advanced Optical Materials, 2016, 4, 195-224.	7.3	67
131	Hierarchical anti-reflective laser-induced periodic surface structures (LIPSSs) on amorphous Si films for sensing applications. Nanoscale, 2020, 12, 13431-13441.	5.6	67
132	The synthesis and microstructure of morph-genetic TiC/C ceramics. Carbon, 2004, 42, 177-182.	10.3	66
133	Enhanced mechanical behavior and fabrication of silicon carbide particles covered by in-situ carbon nanotube reinforced 6061 aluminum matrix composites. Materials and Design, 2016, 107, 130-138.	7. 0	66
134	3D Printing of Artificial Leaf with Tunable Hierarchical Porosity for CO ₂ Photoreduction. Chemistry of Materials, 2018, 30, 799-806.	6.7	66
135	An Insight into Artificial Leaves for Sustainable Energy Inspired by Natural Photosynthesis. ChemCatChem, 2011, 3, 513-528.	3.7	65
136	Full-color CO2 gas sensing by an inverse opal photonic hydrogel. Chemical Communications, 2013, 49, 8229.	4.1	65
137	Highly sensitive, reproducible and uniform SERS substrates with a high density of three-dimensionally distributed hotspots: gyroid-structured Au periodic metallic materials. NPG Asia Materials, 2018, 10, e462-e462.	7.9	65
138	Reaction-free interface promoting strength-ductility balance in graphene nanosheet/Al composites. Carbon, 2020, 158, 449-455.	10.3	65
139	Tunable Photonic Polyelectrolyte Colorimetric Sensing for Anions, Cations and Zwitterions. Advanced Materials, 2010, 22, 5043-5047.	21.0	64
140	C2-symmetric benzene-based hydrogels with unique layered structures for controllable organic dye adsorption. Soft Matter, 2012, 8, 3231.	2.7	64
141	Challenges and Perspectives in Designing Artificial Photosynthetic Systems. Chemistry - A European Journal, 2016, 22, 9870-9885.	3.3	64
142	Facile Self-Cross-Linking Synthesis of 3D Nanoporous Co ₃ O ₄ /Carbon Hybrid Electrode Materials for Supercapacitors. ACS Applied Materials &	8.0	64
143	High-Efficiency g-C3N4 Based Photocatalysts for CO2 Reduction: Modification Methods. Advanced Fiber Materials, 2022, 4, 342-360.	16.1	64
144	Biomass-derived hierarchical porous CdS/M/TiO 2 (MÂ=ÂAu, Ag, pt, pd) ternary heterojunctions for photocatalytic hydrogen evolution. International Journal of Hydrogen Energy, 2014, 39, 16293-16301.	7.1	63

#	Article	IF	Citations
145	Leaf-like carbon nanotube-graphene nanoribbon hybrid reinforcements for enhanced load transfer in copper matrix composites. Scripta Materialia, 2017, 138, 17-21.	5.2	63
146	Control of Drug Release through the In Situ Assembly of Stimuliâ€Responsive Ordered Mesoporous Silica with Magnetic Particles. ChemPhysChem, 2007, 8, 2478-2483.	2.1	62
147	3D hierarchical porous SnO ₂ derived from self-assembled biological systems for superior gas sensing application,. Journal of Materials Chemistry, 2012, 22, 1121-1126.	6.7	62
148	The influences of trace TiB and TiC on microstructure refinement and mechanical properties of in situ synthesized Ti matrix composite. Composites Part B: Engineering, 2012, 43, 3334-3337.	12.0	62
149	Microstructure evolution and mechanical properties of a Ti–35Nb–3Zr–2Ta biomedical alloy processed by equal channel angular pressing (ECAP). Materials Science and Engineering C, 2013, 33, 4551-4561.	7.3	62
150	Fabrication of BiVO4 nanoplates with active facets on graphene sheets for visible-light photocatalyst. Carbon, 2015, 94, 599-606.	10.3	62
151	Interfacial strength and deformation mechanism of SiC–Al composite micro-pillars. Scripta Materialia, 2016, 114, 56-59.	5.2	62
152	Microstructural characterization of TiC in in situ synthesized titanium matrix composites prepared by common casting technique. Journal of Alloys and Compounds, 2001, 327, 248-252.	5 . 5	61
153	Amorphous carbon-matrix composites with interconnected carbon nano-ribbon networks for electromagnetic interference shielding. Carbon, 2008, 46, 461-465.	10.3	61
154	Spontaneous Cross-linking for Fabrication of Nanohybrids Embedded with Size-Controllable Particles. ACS Nano, 2016, 10, 889-898.	14.6	61
155	Effect of reinforcements on high temperature mechanical properties of in situ synthesized titanium matrix composites. Materials Science & Diposites amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 491, 192-198.	5.6	60
156	Fabrication and good ethanol sensing of biomorphic SnO2with architecture hierarchy of butterfly wings. Nanotechnology, 2009, 20, 495502.	2.6	60
157	Biotemplate fabrication of SnO2 nanotubular materials by a sonochemical method for gas sensors. Journal of Nanoparticle Research, 2010, 12, 1389-1400.	1.9	60
158	Highly sensitive colorimetric sensing for heavy metal ions by strong polyelectrolyte photonic hydrogels. Journal of Materials Chemistry, 2011, 21, 17193.	6.7	60
159	Influence of interfaces on the mechanical behavior of SiC particulate-reinforced Al–Zn–Mg–Cu composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 644, 79-84.	5.6	60
160	Influence of cold deformation on martensite transformation and mechanical properties of Ti–Nb–Ta–Zr alloy. Journal of Alloys and Compounds, 2009, 469, 512-518.	5.5	59
161	Effect of \hat{l}^2 heat treatment temperature on microstructure and mechanical properties of in situ titanium matrix composites. Materials & Design, 2010, 31, 4269-4273.	5.1	59
162	Bioinspired Au–CuS coupled photothermal materials: enhanced infrared absorption and photothermal conversion from butterfly wings. Nano Energy, 2015, 17, 52-62.	16.0	59

#	Article	IF	Citations
163	Artificial photosynthesis on tree trunk derived alkaline tantalates with hierarchical anatomy: towards CO ₂ photo-fixation into CO and CH ₄ . Nanoscale, 2015, 7, 113-120.	5.6	59
164	Nucleation and growth mechanisms of interfacial carbide in graphene nanosheet/Al composites. Carbon, 2020, 161, 17-24.	10.3	59
165	Fabrication of graphite film/aluminum composites by vacuum hot pressing: Process optimization and thermal conductivity. Composites Part B: Engineering, 2016, 107, 43-50.	12.0	58
166	High-strength CNT/Al-Zn-Mg-Cu composites with improved ductility achieved by flake powder metallurgy via elemental alloying. Composites Part A: Applied Science and Manufacturing, 2018, 111, 1-11.	7.6	58
167	Enhanced corrosion resistance in metal matrix composites assembled from graphene encapsulated copper nanoflakes. Carbon, 2019, 142, 482-490.	10.3	58
168	Fabrication and gas sensitivity of SnO2hierarchical films with interwoven tubular conformation by a biotemplate-directed sol–gel technique. Nanotechnology, 2006, 17, 3968-3972.	2.6	57
169	Architectured Leafâ€Inspired Ni _{0.33} Co _{0.66} S ₂ /Graphene Aerogels via 3D Printing for Highâ€Performance Energy Storage. Advanced Functional Materials, 2018, 28, 1805057.	14.9	56
170	Microstructure evolution of near-α titanium alloys during thermomechanical processing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 416, 59-65.	5.6	55
171	Two-dimensional quantum-sheet films with sub-1.2 nm channels for ultrahigh-rate electrochemical capacitance. Nature Nanotechnology, 2022, 17, 153-158.	31.5	55
172	The effect of heat treatment on thermal stability of Ti matrix composite. Journal of Alloys and Compounds, 2011, 509, 52-56.	5.5	54
173	A quantitative method to characterize the Al 4 C 3 -formed interfacial reaction: The case study of MWCNT/Al composites. Materials Characterization, 2016, 112, 213-218.	4.4	54
174	Three-Dimensional CdS/Au Butterfly Wing Scales with Hierarchical Rib Structures for Plasmon-Enhanced Photocatalytic Hydrogen Production. ACS Applied Materials & Samp; Interfaces, 2018, 10, 19649-19655.	8.0	54
175	Reinforcement with intragranular dispersion of carbon nanotubes in aluminum matrix composites. Composites Part B: Engineering, 2021, 217, 108915.	12.0	54
176	Precision Replication of Hierarchical Biological Structures by Metal Oxides Using a Sonochemical Method. Langmuir, 2008, 24, 6292-6299.	3.5	53
177	Synthesis of Nd:YAG powders leading to transparent ceramics: The effect of MgO dopant. Journal of the European Ceramic Society, 2011, 31, 653-657.	5.7	53
178	Development of Flake Powder Metallurgy in Fabricating Metal Matrix Composites: A Review. Acta Metallurgica Sinica (English Letters), 2014, 27, 806-815.	2.9	53
179	A facile low-temperature synthesis of highly distributed and size-tunable cobalt oxide nanoparticles anchored on activated carbon for supercapacitors. Journal of Power Sources, 2015, 273, 945-953.	7.8	53
180	Porous TiC Ceramics Derived from Wood Template. Journal of Porous Materials, 2002, 9, 275-277.	2.6	52

#	Article	IF	CITATIONS
181	Synthesis and hierarchical pore structure of biomorphic manganese oxide derived from woods. Journal of the European Ceramic Society, 2006, 26, 3657-3664.	5.7	52
182	Butterfly wings as natural photonic crystal scaffolds for controllable assembly of CdS nanoparticles. Journal of Materials Chemistry, 2009, 19, 8741.	6.7	52
183	Mechanical reinforcement of C2-phenyl-derived hydrogels for controlled cell adhesion. Soft Matter, 2013, 9, 3750.	2.7	52
184	Effect of ECAP numbers on microstructure and properties of titanium matrix composite. Materials & Design, 2015, 75, 113-119.	5.1	52
185	3D Interconnected Gyroid Au–CuS Materials for Efficient Solar Steam Generation. ACS Applied Materials & Company (1978) Among the Materials & Company (1978)	8.0	52
186	N-doped catalytic graphitized hard carbon for high-performance lithium/sodium-ion batteries. Scientific Reports, 2018, 8, 9934.	3.3	51
187	Influence of hierarchical nanostructures on the gas sensing properties of SnO2 biomorphic films. Sensors and Actuators B: Chemical, 2007, 123, 420-428.	7.8	50
188	Art of blackness in butterfly wings as natural solar collector. Soft Matter, 2011, 7, 11433.	2.7	50
189	Diamond/aluminum composites processed by vacuum hot pressing: Microstructure characteristics and thermal properties. Diamond and Related Materials, 2013, 31, 1-5.	3.9	50
190	Fe2O3/TiO2 photocatalyst of hierarchical structure for H2 production from water under visible light irradiation. Microporous and Mesoporous Materials, 2014, 190, 10-16.	4.4	50
191	Investigation of Deformation Mechanisms in \hat{l}^2 -Type Ti-35Nb-2Ta-3Zr Alloy via FSP Leading to Surface Strengthening. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46, 4813-4818.	2.2	50
192	Graphene quality dominated interface deformation behavior of graphene-metal composite: The defective is better. International Journal of Plasticity, 2018, 111, 253-265.	8.8	50
193	Synergetic pore structure optimization and nitrogen doping of 3D porous graphene for high performance lithium sulfur battery. Carbon, 2019, 143, 869-877.	10.3	50
194	Biogenic N–P-codoped TiO2: Synthesis, characterization and photocatalytic properties. Bioresource Technology, 2010, 101, 6829-6835.	9.6	49
195	Boosted charge transfer in dual Z-scheme BiVO4@Znln2S4/Bi2Sn2O7 heterojunctions: Towards superior photocatalytic properties for organic pollutant degradation. Chemosphere, 2021, 276, 130226.	8.2	49
196	Reinforcements stimulated dynamic recrystallization behavior and tensile properties of extruded (TiBÂ+ÂTiCÂ+ÂLa 2 O 3)/Ti6Al4V composites. Journal of Alloys and Compounds, 2017, 699, 874-881.	5.5	49
197	Microstructure and tensile properties of in situ synthesized (TiB+Y2O3)/Ti composites at elevated temperature. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2003, 360, 176-182.	5. 6	48
198	Bioinspired Carbon/SnO ₂ Composite Anodes Prepared from a Photonic Hierarchical Structure for Lithium Batteries. ACS Applied Materials & Structure for Lithium Batteries.	8.0	48

#	Article	IF	CITATIONS
199	Effect of extrusion dies angle on the microstructure and properties of (TiB+TiC)/Ti6Al4V in situ titanium matrix composite. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 667, 317-325.	5.6	48
200	Tailoring interfacial bonding states of highly thermal performance diamond/Al composites: Spark plasma sintering vs. vacuum hot pressing. Composites Part A: Applied Science and Manufacturing, 2016, 91, 9-19.	7.6	48
201	Fabrication and thermal conductivity of copper coated graphite film/aluminum composites for effective thermal management. Journal of Alloys and Compounds, 2017, 711, 22-30.	5.5	48
202	Iridescent large-area ZrO2 photonic crystals using butterfly as templates. Applied Physics Letters, 2009, 94, .	3.3	47
203	Steady state creep of in situ TiB plus La2O3 reinforced high temperature titanium matrix composite. Materials Science & Diplication A: Structural Materials: Properties, Microstructure and Processing, 2009, 499, 500-506.	5. 6	47
204	Single porous SnO ₂ microtubes templated from Papilio maacki bristles: new structure towards superior gas sensing. Journal of Materials Chemistry A, 2014, 2, 4543-4550.	10.3	47
205	In situ preparation of titanium matrix composites reinforced by TiB and Nd2O3. Materials Letters, 2003, 57, 4054-4057.	2.6	46
206	Thermodynamic effect of alloying addition on in-situ reinforced TiB2/Al composites. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2005, 36, 225-233.	2.2	46
207	The effect of reinforcements on superplasticity of in situ synthesized (TiB+TiC)/Ti matrix composite. Scripta Materialia, 2006, 54, 1955-1959.	5.2	46
208	Strengthening effects of TiC particles and microstructure refinement in in situ TiC-reinforced Ti matrix composites. Materials Characterization, 2017, 127, 27-34.	4.4	46
209	Microstructure-based modeling on structure-mechanical property relationships in carbon nanotube/aluminum composites. International Journal of Plasticity, 2019, 120, 278-295.	8.8	46
210	Microstructure and tensile properties of in situ synthesized (TiC+TiB+Nd2O3)/Ti-alloy composites at elevated temperature. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 425, 185-191.	5.6	45
211	Superplasticity of coarse-grained (TiB+TiC)/Ti–6Al–4V composite. Journal of Alloys and Compounds, 2010, 490, 118-123.	5.5	45
212	The Role of Lattice Misfit on Heterogeneous Nucleation of Pure Aluminum. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 5012-5022.	2.2	45
213	Configuration design and fabrication of laminated titanium matrix composites. Materials and Design, 2016, 99, 219-224.	7.0	45
214	Effect of Al2O3 coating thickness on microstructural characterization and mechanical properties of continuous carbon fiber reinforced aluminum matrix composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 793, 139839.	5. 6	45
215	Bacteria-based controlled assembly of metal chalcogenide hollow nanostructures with enhanced light-harvesting and photocatalytic properties. Nanotechnology, 2009, 20, 085603.	2.6	44
216	Biomimetic photocatalyst system derived from the natural prototype in leaves for efficient visible-light-driven catalysis. Journal of Materials Chemistry, 2009, 19, 2695.	6.7	44

#	Article	IF	Citations
217	The growth of carbon nanotubes in aluminum powders by the catalytic pyrolysis of polyethylene glycol. Carbon, 2012, 50, 1057-1062.	10.3	44
218	Metalâ€Organic Frameworks Reactivate Deceased Diatoms to be Efficient CO ₂ Absorbents. Advanced Materials, 2014, 26, 1229-1234.	21.0	44
219	A highly sensitive room temperature H ₂ S gas sensor based on SnO ₂ multi-tube arrays bio-templated from insect bristles. Dalton Transactions, 2015, 44, 7911-7916.	3.3	44
220	Effects of alloyed Si on the autoclave corrosion performance and periodic corrosion kinetics in Zr–Sn–Nb–Fe–O alloys. Corrosion Science, 2015, 100, 651-662.	6.6	44
221	Effect of microstructure on corrosion behavior of a Zr–Sn–Nb–Fe–Cu–O alloy. Materials and Design, 2016, 92, 888-896.	7.0	44
222	Biogenic Synthesis and Photocatalysis of Pdâ^'PdO Nanoclusters Reinforced Hierarchical TiO ₂ Films with Interwoven and Tubular Conformations. Biomacromolecules, 2008, 9, 499-504.	5.4	43
223	In-situ carbon nanotube-covered silicon carbide particle reinforced aluminum matrix composites fabricated by powder metallurgy. Materials Letters, 2016, 167, 118-121.	2.6	43
224	Enhanced mechanical properties and high electrical conductivity in multiwalled carbon nanotubes reinforced copper matrix nanolaminated composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 729, 452-457.	5.6	43
225	Densely integrated Co, N-Codoped Graphene@Carbon nanotube porous hybrids for high-performance lithium-sulfur batteries. Carbon, 2019, 149, 750-759.	10.3	43
226	Biomorphic synthesis of SnO2 microtubules on cotton fibers. Materials Letters, 2005, 59, 2325-2328.	2.6	42
227	Synthesis of hierarchical mesoporous titania with interwoven networks by eggshell membrane directed sol–gel technique. Microporous and Mesoporous Materials, 2007, 98, 344-351.	4.4	42
228	Synthesis and characterizations of hierarchical biomorphic titania oxide by a bio-inspired bottom-up assembly solution technique. Journal of Solid State Chemistry, 2007, 180, 949-955.	2.9	42
229	Influence of pH values on (Nd+Y):Al molar ratio of Nd:YAG nanopowders and preparation of transparent ceramics. Journal of Alloys and Compounds, 2010, 503, 525-528.	5.5	42
230	Reduction of CuO Butterfly Wing Scales Generates Cu SERS Substrates for DNA Base Detection. ACS Applied Materials & Detec	8.0	42
231	Bulk nanolaminated graphene (reduced graphene oxide)–aluminum composite tolerant of radiation damage. Acta Materialia, 2020, 196, 17-29.	7.9	42
232	A simple and effective approach towards biomimetic replication of photonic structures from butterfly wings. Nanotechnology, 2009, 20, 315303.	2.6	41
233	Creep behaviors and stress regions of hybrid reinforced high temperature titanium matrix composite. Composites Science and Technology, 2009, 69, 1925-1931.	7.8	41
234	Sonochemical fabrication of morpho-genetic TiO2 with hierarchical structures for photocatalyst. Journal of Nanoparticle Research, 2010, 12, 2445-2456.	1.9	41

#	Article	IF	CITATIONS
235	The characterization of shape memory effect for low elastic modulus biomedical \hat{l}^2 -type titanium alloy. Materials Characterization, 2010, 61, 535-541.	4.4	41
236	Morphological Effects on Surface-Enhanced Raman Scattering from Silver Butterfly Wing Scales Synthesized via Photoreduction. Langmuir, 2011, 27, 11742-11746.	3.5	41
237	Bioinspired Au/TiO2 photocatalyst derived from butterfly wing (Papilio Paris). Journal of Colloid and Interface Science, 2012, 370, 117-123.	9.4	41
238	Butterfly effects: novel functional materials inspired from the wings scales. Physical Chemistry Chemical Physics, 2014, 16, 19767-19780.	2.8	41
239	Microstructure and mechanical properties variation of TiB/Ti matrix composite by thermo-mechanical processing in beta phase field. Journal of Alloys and Compounds, 2017, 695, 1515-1522.	5.5	41
240	Composite structural modeling and tensile mechanical behavior of graphene reinforced metal matrix composites. Science China Materials, 2018, 61, 112-124.	6.3	41
241	Replication of butterfly wing in TiO2 with ordered mesopores assembled inside for light harvesting. Materials Letters, 2010, 64, 2745-2747.	2.6	40
242	Grafting of graphene oxide with stimuli-responsive polymers by using ATRP for drug release. Journal of Nanoparticle Research, 2012, 14, 1.	1.9	40
243	Sintering and laser behavior of composite YAG/Nd:YAG/YAG transparent ceramics. Journal of Alloys and Compounds, 2012, 527, 66-70.	5.5	40
244	2.44KW laser output of Nd:YAG ceramic slab fabricated by a solid-state reactive sintering. Journal of Alloys and Compounds, 2012, 538, 258-261.	5.5	40
245	Tumor marker detection using surface enhanced Raman spectroscopy on 3D Au butterfly wings. Journal of Materials Chemistry B, 2017, 5, 1594-1600.	5.8	40
246	Oxidation of in situ synthesized TiC particle-reinforced titanium matrix composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 404, 42-48.	5.6	39
247	Biotemplate-directed assembly of porous SnO2 nanoparticles into tubular hierarchical structures. Scripta Materialia, 2006, 55, 799-802.	5.2	39
248	Hierarchical Metal Oxides Assembled by Nanocrystallites Via a Simple Bio-Inspired Route. Journal of the American Ceramic Society, 2007, 90, 376-380.	3.8	39
249	Texture and superelastic behavior of cold-rolled TiNbTaZr alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 491, 372-377.	5.6	39
250	Microstructure and mechanical property of in situ synthesized multiple-reinforced (TiB+TiC+La2O3)/Ti composites. Journal of Alloys and Compounds, 2008, 455, 210-214.	5.5	39
251	Zr–Sn–Nb–Fe–Si–O alloy for fuel cladding candidate: Processing, microstructure, corrosion resistance and tensile behavior. Corrosion Science, 2015, 100, 332-340.	6.6	39
252	Strengthening effect of in situ TiC particles in Ti matrix composite at temperature range for hot working. Materials Characterization, 2016, 120, 304-310.	4.4	39

#	Article	IF	Citations
253	Bio-inspired Plasmonic Nanoarchitectured Hybrid System Towards Enhanced Far Red-to-Near Infrared Solar Photocatalysis. Scientific Reports, 2016, 6, 20001.	3.3	39
254	Light-Driven Overall Water Splitting Enabled by a Photo-Dember Effect Realized on 3D Plasmonic Structures. ACS Nano, 2016, 10, 6693-6701.	14.6	39
255	Heteroatomâ€Doped Carbonaceous Photocatalysts for Solar Fuel Production and Environmental Remediation. ChemCatChem, 2018, 10, 62-123.	3.7	39
256	The interfacial reaction characteristics in SiC/Al composite above liquidus during remelting. Materials Science & Description of the Architectural Materials: Properties, Microstructure and Processing, 1998, 257, 281-286.	5.6	38
257	A new high-temperature, oxidation-resistant in situ TiB and TiC reinforced Ti6242 alloy. Journal of Alloys and Compounds, 2008, 455, 369-375.	5.5	38
258	Effect of precipitation phase on microstructure and superelasticity of cold-rolled beta titanium alloy during heat treatment. Materials & Design, 2009, 30, 3873-3878.	5.1	38
259	Thermo-responsive polymer-functionalized mesoporous carbon for controlled drug release. Materials Chemistry and Physics, 2011, 126, 357-363.	4.0	38
260	Hydrogen evolution via sunlight water splitting on an artificial butterfly wing architecture. Physical Chemistry Chemical Physics, 2011, 13, 10872.	2.8	38
261	Engineering Gyroidâ€Structured Functional Materials via Templates Discovered in Nature and in the Lab. Small, 2015, 11, 5004-5022.	10.0	38
262	Phase transformation and deformation behavior of NiTi-Nb eutectic joined NiTi wires. Scientific Reports, 2016, 6, 23905.	3.3	38
263	Bioinspired Polymeric Photonic Crystals for High Cycling pH-Sensing Performance. ACS Applied Materials & Samp; Interfaces, 2016, 8, 27091-27098.	8.0	38
264	Confined SnO2 quantum-dot clusters in graphene sheets as high-performance anodes for lithium-ion batteries. Scientific Reports, 2016, 6, 25829.	3.3	38
265	Novel pH responsive hydrogels for controlled cell adhesion and triggered surface detachment. Soft Matter, 2012, 8, 9539.	2.7	37
266	Electrochemical detection of p-nitrophenol on surface imprinted gold with lamellar-ridge architecture. Sensors and Actuators B: Chemical, 2015, 220, 33-39.	7.8	37
267	Biomimetic Superstructures Assembled from Au Nanostars and Nanospheres for Efficient Solar Evaporation. Advanced Sustainable Systems, 2019, 3, 1900003.	5.3	37
268	Biomimetic Photonic Multiform Composite for Highâ€Performance Radiative Cooling. Advanced Optical Materials, 2021, 9, 2101151.	7.3	37
269	In situ synthesis and damping capacities of TiC reinforced magnesium matrix composites. Materials Science & Science & Properties, Microstructure and Processing, 2008, 496, 242-246.	5.6	36
270	Effect of La2O3 on microstructures and laser properties of Nd:YAG ceramics. Journal of Alloys and Compounds, 2012, 512, 1-4.	5. 5	36

#	Article	IF	Citations
271	A 3D hierarchical hybrid nanostructure of carbon nanotubes and activated carbon for high-performance supercapacitors. Journal of Materials Chemistry A, 2014, 2, 3505.	10.3	36
272	Freeze-drying assisted synthesis of hierarchical porous carbons for high-performance supercapacitors. Journal of Materials Chemistry A, 2015, 3, 21016-21022.	10.3	36
273	Plasmonic nanoparticles tuned thermal sensitive photonic polymer for biomimetic chameleon. Scientific Reports, 2016, 6, 31328.	3.3	36
274	Process optimization, microstructure characterization and thermal properties of mesophase pitch-based carbon fiber reinforced aluminum matrix composites fabricated by vacuum hot pressing. Composites Part B: Engineering, 2021, 215, 108746.	12.0	36
275	Remarkable anisotropic wear resistance with 100-fold discrepancy in a copper matrix laminated composite with only 0.2 vol% graphene. Acta Materialia, 2021, 215, 117092.	7.9	36
276	Microstructure and tensile properties of in situ synthesized (TiBw + TiCp)/Ti6242 composites. Journal of Materials Science, 2001, 36, 3707-3714.	3.7	35
277	Superplastic behavior of in situ synthesized (TiB+TiC)/Ti matrix composite. Scripta Materialia, 2005, 53, 265-270.	5.2	35
278	ZnO single butterfly wing scales: synthesis and spatial optical anisotropy. Journal of Materials Chemistry, 2011, 21, 6140.	6.7	35
279	Synthesis of carbon nanotube/aluminium composite powders by polymer pyrolysis chemical vapor deposition. Carbon, 2013, 55, 202-208.	10.3	35
280	Bio-inspired fabrication of stimuli-responsive photonic crystals with hierarchical structures and their applications. Nanotechnology, 2016, 27, 122001.	2.6	35
281	Effects of extrusion ratio on microstructural evolution and mechanical behavior of in situ synthesized Ti-6Al-4V composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 688, 155-163.	5.6	35
282	Fabrication and the wear behaviors of the carbon/aluminum composites based on wood templates. Carbon, 2006, 44, 900-906.	10.3	34
283	Bio-Inspired Bottom-Up Assembly of Diatom-Templated Ordered Porous Metal Chalcogenide Meso/Nanostructures. European Journal of Inorganic Chemistry, 2009, 2009, 211-215.	2.0	34
284	Conjugated Acetylenic Polymers Grafted Cuprous Oxide as an Efficient Zâ€6cheme Heterojunction for Photoelectrochemical Water Reduction. Advanced Materials, 2020, 32, e2002486.	21.0	34
285	Microstructure and Infrared Absorption of Biomorphic Chromium Oxides Templated by Wood Tissues. Journal of the American Ceramic Society, 2006, 89, 3511-3515.	3.8	33
286	Biomimetic fabrication of \hat{l}_{\pm} -Fe2O3 with hierarchical structures as H2S Sensor. Journal of Materials Science, 2013, 48, 4336-4344.	3.7	33
287	Sonochemical fabrication of mesoporous TiO2 inside diatom frustules for photocatalyst. Ultrasonics Sonochemistry, 2014, 21, 527-534.	8.2	33
288	Microwave-assisted anchoring of flowerlike Co(OH)2 nanosheets on activated carbon to prepare hybrid electrodes for high-rate electrochemical capacitors. Electrochimica Acta, 2015, 170, 328-336.	5.2	33

#	Article	IF	Citations
289	Construction of Z-scheme heterojunction by coupling Bi2Sn2O7 and BiOBr with abundant oxygen vacancies: Enhanced photodegradation performance and mechanism insight. Journal of Colloid and Interface Science, 2022, 612, 550-561.	9.4	33
290	High-temperature tensile properties of in situ-synthesized titanium matrix composites with strong dependence on strain rates. Journal of Materials Research, 2008, 23, 3066-3074.	2.6	32
291	Assembly of Coreâ^'Shell Structures for Photocatalytic Hydrogen Evolution from Aqueous Methanol. Chemistry of Materials, 2010, 22, 3362-3368.	6.7	32
292	Independent multifunctional detection by wettability controlled inverse opal hydrogels. Chemical Communications, 2012, 48, 4609.	4.1	32
293	High content reduced graphene oxide reinforced copper with a bioinspired nano-laminated structure and large recoverable deformation ability. Scientific Reports, 2016, 6, 33801.	3.3	32
294	<i>In situ</i> synthesis of BiOCl nanosheets on three-dimensional hierarchical structures for efficient photocatalysis under visible light. Nanoscale, 2019, 11, 10203-10208.	5.6	32
295	Butterfly wing architectures inspire sensor and energy applications. National Science Review, 2021, 8, nwaa107.	9.5	32
296	Biogenic Hierarchical TiO2/SiO2 Derived from Rice Husk and Enhanced Photocatalytic Properties for Dye Degradation. PLoS ONE, 2011, 6, e24788.	2.5	32
297	In situ preparation of titanium matrix composites reinforced with TiB whiskers and Y2O3 particles. Materials Research Bulletin, 2004, 39, 873-879.	5.2	31
298	Synthesis and cathodoluminescence properties of porous wood (fir)-templated zinc oxide. Ceramics International, 2008, 34, 69-74.	4.8	31
299	Synthesis and properties of ZnFe 2 O 4 replica with biological hierarchical structure. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2013, 178, 1057-1061.	3.5	31
300	Surface plasmon resonance of gold nanocrystals coupled with slow-photon-effect of biomorphic TiO 2 photonic crystals for enhanced photocatalysis under visible-light. Catalysis Today, 2016, 274, 15-21.	4.4	31
301	Heat treatment behavior and strengthening mechanisms of CNT/6061Al composites fabricated by flake powder metallurgy. Materials Characterization, 2019, 153, 261-270.	4.4	31
302	Biosynthesis of cathodoluminescent zinc oxide replicas using butterfly (Papilio paris) wing scales as templates. Materials Science and Engineering C, 2009, 29, 92-96.	7.3	30
303	Controlled synthesis of core/shell magnetic iron oxide/carbon systems via a self-template method. Journal of Materials Chemistry, 2009, 19, 7710.	6.7	30
304	From crabshell to chitosan-hydroxyapatite composite material via a biomorphic mineralization synthesis method. Journal of Materials Science: Materials in Medicine, 2010, 21, 1781-1787.	3.6	30
305	Influence of heating rate on optical properties of Nd:YAG laser ceramic. Ceramics International, 2010, 36, 2197-2201.	4.8	30
306	Bacteria-directed construction of hollow TiO_2 micro/nanostructures with enhanced photocatalytic hydrogen evolution activity. Optics Express, 2012, 20, A340.	3.4	30

#	Article	IF	CITATIONS
307	Gelator-polysaccharide hybrid hydrogel for selective and controllable dye release. Journal of Colloid and Interface Science, 2012, 387, 115-122.	9.4	30
308	BiFeO3–(NaO.5BiO.5)TiO3 butterfly wing scales: Synthesis, visible-light photocatalytic and magnetic properties. Journal of the European Ceramic Society, 2012, 32, 4335-4340.	5.7	30
309	Study of thermal conductivity and stress-strain compression behavior of epoxy composites highly filled with Al and Al/f-MWCNT obtained by high-energy ball milling. Composites Part A: Applied Science and Manufacturing, 2017, 101, 344-352.	7.6	30
310	Hot deformation behavior of in situ synthesized Ti-1100 composite reinforced with 5 vol.% TiC particles. Materials Letters, 2006, 60, 400-405.	2.6	29
311	In situsynthesis of lead sulfide nanoclusters on eggshell membrane fibers by an ambient bio-inspired technique. Smart Materials and Structures, 2008, 17, 015045.	3.5	29
312	Effect of hydrogen on microstructure and high temperature deformation of (TiB+TiC)/Ti–6Al–4V composite. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 500, 1-7.	5.6	29
313	Tunable three-dimensional ZrO2 photonic crystals replicated from single butterfly wing scales. Journal of Materials Chemistry, 2011, 21, 15237.	6.7	29
314	Microstructure and mechanical properties of <i>in situ</i> synthesised (TiC+TiB)/Ti–6Al–4V composites prepared by powder metallurgy. Materials Science and Technology, 2011, 27, 1788-1792.	1.6	29
315	Biomimetic Bi2WO6 with hierarchical structures from butterfly wings for visible light absorption. Materials Letters, 2012, 77, 21-24.	2.6	29
316	RGD anchored C2-benzene based PEG-like hydrogels as scaffolds for two and three dimensional cell cultures. Journal of Materials Chemistry B, 2013, 1, 3562.	5.8	29
317	Photocatalyst of organic pollutants decomposition: TiO 2 /glass fiber cloth composites. Catalysis Today, 2016, 274, 2-7.	4.4	29
318	Hierarchical photonic structured stimuli-responsive materials as high-performance colorimetric sensors. Nanoscale, 2016, 8, 10316-10322.	5.6	29
319	A bioinspired poly(N-isopropylacrylamide)/silver nanocomposite as a photonic crystal with both optical and thermal responses. Nanoscale, 2017, 9, 12969-12975.	5.6	29
320	TEM characterization on microstructure of Ti–6Al–4V/Ag nanocomposite formed by friction stir processing. Materialia, 2018, 3, 139-144.	2.7	29
321	Hierarchical few-layer fluorine-free Ti $<$ sub $>$ 3 $<$ /sub $>$ C $<$ sub $>$ 2 $<$ /sub $>$ T $<$ sub $>$ X $<$ /sub $>$ (T = O,) Tj ETQq1 1 0.784314 Chemistry A, 2021, 9, 922-927.	rgBT /Ov	erlock 10 Tf 29
322	Computational structural modeling and mechanical behavior of carbon nanotube reinforced aluminum matrix composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 614, 273-283.	5.6	28
323	A Fe/Fe ₃ O ₄ /N-carbon composite with hierarchical porous structure and in situ formed N-doped graphene-like layers for high-performance lithium ion batteries. Dalton Transactions, 2015, 44, 4594-4600.	3.3	28
324	Effect of forging and heat treatment on the microstructure of in situ TiC/Ti-1100 composites. Journal of Alloys and Compounds, 2007, 428, 332-337.	5.5	27

#	Article	IF	Citations
325	Biogenic Synthesis of Tubular SnO2 with Hierarchical Intertextures by an Aqueous Technique Involving Glycoprotein. Langmuir, 2007, 23, 8108-8113.	3.5	27
326	In situ preparation of (TiB + TiC + Nd2O3)/Ti composites by powder metallurgy. Journal of Alloys and Compounds, 2009, 469, 116-122.	5.5	27
327	Thermal stability of in situ synthesized (TiB+La2O3)/Ti composite. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 4883-4887.	5.6	27
328	Design of a structure with low incident and viewing angle dependence inspired by Morpho butterflies. Scientific Reports, 2013, 3, 3427.	3.3	27
329	3D TiO2 submicrostructures decorated by silver nanoparticles as SERS substrate for organic pollutants detection and degradation. Materials Research Bulletin, 2014, 49, 560-565.	5.2	27
330	Preparation of TiNi films by diffusion technology and the study of the formation sequence of the intermetallics in Ti–Ni systems. Journal of Materials Research, 2014, 29, 2707-2716.	2.6	27
331	A chiral smectic structure assembled from nanosheets and nanorods. Chemical Communications, 2017, 53, 1868-1871.	4.1	27
332	3D nanostructured WO ₃ /BiVO ₄ heterojunction derived from Papilio paris for efficient water splitting. RSC Advances, 2017, 7, 27354-27360.	3.6	27
333	Grain boundary-assisted deformation in graphene–Al nanolaminated composite micro-pillars. Materials Research Letters, 2018, 6, 41-48.	8.7	27
334	Interfacial Effect on the Deformation Mechanism of Bulk Nanolaminated Graphene-Al Composites. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2019, 50, 1113-1118.	2,2	27
335	Superior photothermal black TiO2 with random size distribution as flexible film for efficient solar steam generation. Applied Materials Today, 2020, 20, 100669.	4.3	27
336	Production of morph-genetic TiC/C ceramic. Materials Letters, 2004, 58, 798-801.	2.6	26
337	Fabrication of hierarchical ZnO films with interwoven porous conformations by a bioinspired templating technique. Chemical Engineering Journal, 2008, 137, 428-435.	12.7	26
338	Hot deformation behavior and microstructure evaluation ofÂhydrogenated Ti-6Al-4V matrix composite. International Journal of Hydrogen Energy, 2009, 34, 9266-9273.	7.1	26
339	A Versatile Method for Uniform Dispersion of Nanocarbons in Metal Matrix Based on Electrostatic Interactions. Nano-Micro Letters, 2016, 8, 54-60.	27.0	26
340	Effect of solid carburization on surface microstructure and hardness of Ti-6Al-4V alloy and (TiB+La2O3)/Ti-6Al-4V composite. Transactions of Nonferrous Metals Society of China, 2016, 26, 1871-1877.	4.2	26
341	Superplastic behavior of carbon nanotube reinforced aluminum composites fabricated by flake powder metallurgy. Materials Science & Discourse amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 699, 55-61.	5.6	26
342	Fabrication of Sensor Materials Inspired by Butterfly Wings. Advanced Materials Technologies, 2017, 2, 1600209.	5.8	26

#	Article	IF	CITATIONS
343	Co-doping silver and iron on graphitic carbon nitride-carrageenan nanocomposite for the photocatalytic process, rapidly colorimetric detection and antibacterial properties. Surfaces and Interfaces, 2021, 26, 101279.	3.0	26
344	Microstructure effect on mechanical properties of in situ synthesized titanium matrix composites reinforced with TiB and La2O3. Materials Letters, 2010, 64, 361-363.	2.6	25
345	Microstructural characteristics and mechanical properties of in situ synthesized (TiB+TiC)/TC18 composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 530, 602-606.	5.6	25
346	Synthesis of Fe2O3 in situ on the surface of mesoporous carbon from alginate as a high-performance anode for lithium-ion batteries. Materials Letters, 2017, 205, 10-14.	2.6	25
347	Grain refinement and superplastic behavior of carbon nanotube reinforced aluminum alloy composite processed by cold rolling. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 708, 537-543.	5.6	25
348	Effect of interfacial reaction on Young's modulus in CNT/Al nanocomposite: A quantitative analysis. Materials Characterization, 2018, 137, 84-90.	4.4	25
349	Facilely green synthesis of 3D nano-pyramids Cu/Carbon hybrid sensor electrode materials for simultaneous monitoring of phenolic compounds. Sensors and Actuators B: Chemical, 2019, 282, 617-625.	7.8	25
350	Preparation of Sn/Fe nanoparticles for Cr (III) detection in presence of leucine, photocatalytic and antibacterial activities. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 253, 119592.	3.9	25
351	Synthesis of biomorphic Al2O3 based on natural plant templates and assembly of Ag nanoparticles controlled within the nanopores. Microporous and Mesoporous Materials, 2008, 108, 204-212.	4.4	24
352	Flake thickness effect of Al2O3/Al biomimetic nanolaminated composites fabricated by flake powder metallurgy. Materials Science & Description A: Structural Materials: Properties, Microstructure and Processing, 2014, 594, 324-329.	5.6	24
353	Demonstration of higher colour response with ambient refractive index in Papilio blumei as compared to Morphorhetenor. Scientific Reports, 2014, 4, 5591.	3.3	24
354	Self-crosslink assisted synthesis of 3D porous branch-like Fe ₃ O ₄ /C hybrids for high-performance lithium/sodium-ion batteries. RSC Advances, 2017, 7, 50307-50316.	3.6	24
355	Correlating micro-pillar compression behavior with bulk mechanical properties: Nanolaminated graphene-Al composite as a case study. Scripta Materialia, 2018, 146, 236-240.	5.2	24
356	Study on the making of metal-matrix interpenetrating phase composites. Scripta Materialia, 1998, 39, 1743-1748.	5.2	23
357	The fabrication of composites with interpenetrating networks based on woodceramics. Materials Letters, 2002, 56, 102-107.	2.6	23
358	The fabrication and wear properties of C/Al and (C+SiC)/Al composites based on wood template. Materials Letters, 2006, 60, 2695-2699.	2.6	23
359	<i>In situ</i> synthesis and photoluminescence of QD-CdS on silk fibroin fibers at room temperature. Nanotechnology, 2008, 19, 025601.	2.6	23
360	Effect of TRIPLEX heat treatment on tensile properties of in situ synthesized (TiB+La2O3)/Ti composite. Materials Science & Damp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 5811-5817.	5.6	23

#	Article	IF	CITATIONS
361	Omnidirectional light absorption of disordered nano-hole structure inspired from Papilio ulysses. Optics Letters, 2014, 39, 4208.	3.3	23
362	Graphene-based photocatalysts for oxygen evolution from water. RSC Advances, 2015, 5, 6543-6552.	3.6	23
363	Angle dependent antireflection property of TiO2 inspired by cicada wings. Applied Physics Letters, 2016, 109, .	3.3	23
364	The highly efficient photocatalytic and light harvesting property of Ag-TiO2 with negative nano-holes structure inspired from cicada wings. Scientific Reports, 2017, 7, 17277.	3.3	23
365	Fabrication, mechanical and thermal properties of copper coated graphite films reinforced copper matrix laminated composites via ultrasonic-assisted electroless plating and vacuum hot-pressing sintering. Materials Science & Degraphy: Engineering A: Structural Materials: Properties, Microstructure and Processing. 2021. 824. 141768.	5.6	23
366	Title is missing!. Journal of Materials Science, 1999, 34, 5175-5180.	3.7	22
367	Tensile properties of in situ synthesized titanium matrix composites reinforced by TiB and Nd2O3 at elevated temperature. Materials & Design, 2003, 24, 409-414.	5.1	22
368	Chemical reaction of SiCp/Al composites during multiple remelting. Composites Part A: Applied Science and Manufacturing, 2003, 34, 291-299.	7.6	22
369	Incubating lead selenide nanoclusters and nanocubes on the eggshell membrane at room temperature. Journal of Membrane Science, 2006, 283, 7-12.	8.2	22
370	Embedment of ZnO nanoparticles in the natural photonic crystals within peacock feathers. Nanotechnology, 2008, 19, 365602.	2.6	22
371	Tunable optical photonic devices made from moth wing scales: a way to enlarge natural functional structures' pool. Journal of Materials Chemistry, 2011, 21, 13913.	6.7	22
372	A Highly Efficient Selfâ€Assembly of Responsive <i>C</i> ₂ â€Cyclohexaneâ€Derived Gelators. Macromolecular Rapid Communications, 2012, 33, 1535-1541.	3.9	22
373	Moth wing scales as optical pH sensors. Sensors and Actuators B: Chemical, 2012, 166-167, 824-828.	7.8	22
374	Silk-mediated synthesis and modification of photoluminescent ZnO nanoparticles. Journal of Nanoparticle Research, 2012, 14, 1.	1.9	22
375	Coupling of plasmon and 3D antireflection quasi-photonic crystal structure for enhancement infrared absorption. Journal of Materials Chemistry C, 2015, 3, 1672-1679.	5. 5	22
376	Simultaneously improving the mechanical and electrical properties of poly(vinyl alcohol) composites by high-quality graphitic nanoribbons. Scientific Reports, 2017, 7, 17137.	3.3	22
377	Prediction of chemical stability in SiCp/Al composites with alloying element addition using Wilson equation and an extended Miedema model. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 394, 327-338.	5.6	21
378	Effect of microstructure on high temperature properties of in situ synthesized (TiB+La2O3)/Ti composite. Materials Characterization, 2012, 66, 93-98.	4.4	21

#	Article	IF	Citations
379	Bio-directed morphology engineering towards hierarchical 1D to 3D macro/meso/nanoscopic morph-tunable carbon nitride assemblies for enhanced artificial photosynthesis. Journal of Materials Chemistry A, 2017, 5, 2195-2203.	10.3	21
380	Functionalized bioinspired porous carbon with graphene sheets as anode materials for lithium-ion batteries. Journal of Alloys and Compounds, 2017, 724, 296-305.	5.5	21
381	Micron-sized encapsulated-type MoS ₂ /C hybrid particulates with an effective confinement effect for improving the cycling performance of LIB anodes. Journal of Materials Chemistry A, 2018, 6, 6289-6298.	10.3	21
382	Effect of overlapping region on double-sided friction stir welded joint of 120Âmm ultra-thick SiCp/Al composite plates. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 782, 139238.	5.6	21
383	Novel Photonic Crystals: Incorporation of Nano-CdS into the Natural Photonic Crystals within Peacock Feathers. Langmuir, 2009, 25, 3207-3211.	3.5	20
384	Bioinspired fabrication of magneto-optic hierarchical architecture by hydrothermal process from butterfly wing. Journal of Magnetism and Magnetic Materials, 2011, 323, 2064-2069.	2.3	20
385	High photocatalytic performance by engineering Bi ₂ WO ₆ nanoneedles onto graphene sheets. RSC Advances, 2014, 4, 27963-27970.	3.6	20
386	Rice-Husk-Templated Hierarchical Porous TiO ₂ /SiO ₂ for Enhanced Bacterial Removal. ACS Applied Materials & Samp; Interfaces, 2014, 6, 2377-2385.	8.0	20
387	Heterogeneous interfacial chemical nature and bonds in a W-coated diamond/Al composite. Materials Characterization, 2016, 112, 129-133.	4.4	20
388	A facile way to synthesize biomorphic N-TiO2 incorporated with Au nanoparticles with narrow size distribution and high stability. Microporous and Mesoporous Materials, 2008, 116, 478-484.	4.4	19
389	Biogenic synthesis of hierarchical hybrid nanocomposites and patterning of silver nanoparticles. Materials Chemistry and Physics, 2008, 110, 160-165.	4.0	19
390	Effect of hydrogen on superplastic deformation of (TiB+TiC)/Ti–6Al–4V composite. International Journal of Hydrogen Energy, 2009, 34, 8308-8314.	7.1	19
391	Preparation of spray-dried powders leading to Nd:YAG ceramics: The effect of PVB adhesive. Ceramics International, 2012, 38, 259-264.	4.8	19
392	Novel Ag decorated biomorphic SnO2 inspired by natural 3D nanostructures as SERS substrates. Materials Letters, 2012, 74, 43-45.	2.6	19
393	Effect of B4C on the Microstructure and Mechanical Properties of As-Cast TiB+TiC/TC4 Composites. Acta Metallurgica Sinica (English Letters), 2014, 27, 205-210.	2.9	19
394	Impact of alumina content and morphology on the mechanical properties of bulk nanolaminated Al2O3-Al composites. Composites Communications, 2020, 22, 100462.	6.3	19
395	Effect of thermomechanical treatment and length-scales on spatial distribution of CNTs in Al matrix. Carbon, 2022, 190, 384-394.	10.3	19
396	Size control of in situ formed reinforcement in metal melts-theoretical treatment and application to in situ (AlN+Mg2Si)/Mg composites. Composites Science and Technology, 2009, 69, 2688-2694.	7.8	18

#	Article	IF	Citations
397	Wettability of Supramolecular Nanofibers for Controlled Cell Adhesion and Proliferation. Langmuir, 2013, 29, 15359-15366.	3.5	18
398	Artificial chloroplast: Au/chloroplast-morph-TiO2 with fast electron transfer and enhanced photocatalytic activity. International Journal of Hydrogen Energy, 2014, 39, 5617-5624.	7.1	18
399	Multifunctional, angle dependent antireflection, and hydrophilic properties of SiO2 inspired by nano-scale structures of cicada wings. Applied Physics Letters, 2017, 111, .	3.3	18
400	Interface-dominated mechanical behavior in advanced metal matrix composites. Nano Materials Science, 2020, 2, 66-71.	8.8	18
401	Microstructural characteristics and mechanical behavior of SiC(CNT)/Al multiphase interfacial micro-zones via molecular dynamics simulations. Composites Part B: Engineering, 2021, 220, 108996.	12.0	18
402	Strengthening mechanisms of carbon element in in situ TiC/Ti-1100 composites. Journal of Materials Science, 2006, 41, 5395-5398.	3.7	17
403	Synthesis of ZnFe 2 O 4 /SiO 2 composites derived from a diatomite template. Bioinspiration and Biomimetics, 2007, 2, 30-35.	2.9	17
404	The effect of forging temperature on microstructure and mechanical properties of in situ TiC/Ti composites. Materials & Design, 2007, 28, 1339-1342.	5.1	17
405	Creep rupture property of in situ synthesized (TiB+La2O3)/Ti composite. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 488, 415-419.	5.6	17
406	In situ deposition of flower-like ZnO on silk fibroin fibers. Applied Physics A: Materials Science and Processing, 2012, 108, 235-238.	2.3	17
407	Large-visual-angle microstructure inspired from quantitative design of Morpho butterflies' lamellae deviation using the FDTD/PSO method. Optics Letters, 2013, 38, 169.	3.3	17
408	Morphology evolution of \hat{l}_{\pm} phase in investment cast titanium matrix composites with B4C additions. Journal of Materials Science, 2015, 50, 5674-5683.	3.7	17
409	Reinforcement with in-situ synthesized carbon nano-onions in aluminum composites fabricated by flake powder metallurgy. Journal of Alloys and Compounds, 2015, 650, 217-223.	5.5	17
410	Hydrothermal synthesis of core–shell TiO 2 to enhance the photocatalytic hydrogen evolution. Applied Surface Science, 2016, 368, 309-315.	6.1	17
411	Strain Rate Sensitivity and Deformation Mechanism of Carbon Nanotubes Reinforced Aluminum Composites. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2019, 50, 3544-3554.	2.2	17
412	First-principles investigation of interfacial stability, mechanical behavior and failure mechanism of \hat{l}^2 -SiC($1\hat{A}1\hat{A}1$)/Al($1\hat{A}1\hat{A}1$) interfaces. Computational Materials Science, 2020, 175, 109608.	3.0	17
413	Simultaneous enhancement of strength and ductility with nano dispersoids in nano and ultrafine grain metals: a brief review. Reviews on Advanced Materials Science, 2020, 59, 352-360.	3.3	17
414	Tensile properties of in situ synthesized (TiB+La2O3)/ \hat{l}^2 -Ti composite. Materials Science and Engineering C, 2009, 29, 1897-1900.	7.3	16

#	Article	IF	Citations
415	The effect of heat treatment on mechanical properties of in situ synthesized 7715D titanium matrix composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 4312-4319.	5.6	16
416	Bioinspired synthesis and gas-sensing performance of porous hierarchical \hat{l}_{\pm} -Fe2O3/C nanocomposites. Scripta Materialia, 2013, 68, 873-876.	5.2	16
417	High power single wavelength ceramic Nd:YAG laser at 1116nm. Optics and Laser Technology, 2013, 46, 139-141.	4.6	16
418	Spectral selectivity of 3D magnetophotonic crystal film fabricated from single butterfly wing scales. Nanoscale, 2014, 6, 6133-6140.	5.6	16
419	Superior H ₂ production by hydrophilic ultrafine Ta ₂ O ₅ engineered covalently on graphene. Nanotechnology, 2014, 25, 215401.	2.6	16
420	Bioinspired Thermoresponsive Photonic Polymers with Hierarchical Structures and Their Unique Properties. Macromolecular Rapid Communications, 2015, 36, 1722-1728.	3.9	16
421	A Facile Synthesis of PdOâ€Decorated SnO ₂ Nanocomposites with Open Porous Hierarchical Architectures for Gas Sensors. Journal of the American Ceramic Society, 2016, 99, 3770-3774.	3.8	16
422	Near-Infrared Trigged Stimulus-Responsive Photonic Crystals with Hierarchical Structures. ACS Applied Materials & Distriction (2017), 9, 34279-34285.	8.0	16
423	Enhanced thermal conductivity of diamond/aluminum composites through tuning diamond particle dispersion. Journal of Materials Science, 2018, 53, 6602-6612.	3.7	16
424	Reversible thermochromic response based on photonic crystal structure in butterfly wing. Nanophotonics, 2018, 7, 217-227.	6.0	16
425	Decorating Ag ₃ PO ₄ nanodots on mesoporous silica-functionalized NaYF ₄ :Yb,Tm@NaLuF ₄ for efficient sunlight-driven photocatalysis: synergy of broad spectrum absorption and pollutant adsorption-enrichment. Inorganic Chemistry Frontiers, 2019, 6, 3529-3538.	6.0	16
426	Interfacial reaction of Al matrix composites reinforced with TiO2-coated SiC particles during remelting. Materials Letters, 2004, 58, 1546-1552.	2.6	15
427	In situ synthesis of hybrid-reinforced titanium matrix composites. Materials Letters, 2007, 61, 2368-2372.	2.6	15
428	Two-dimensional distribution of carbon nanotubes in copper flake powders. Nanotechnology, 2011, 22, 225603.	2.6	15
429	Polarization-sensitive color in butterfly scales: polarization conversion from ridges with reflecting elements. Optics Express, 2014, 22, 27437.	3.4	15
430	Triple ion beam cutting of diamond/Al composites for interface characterization. Materials Characterization, 2014, 89, 132-137.	4.4	15
431	Polarization-sensitive color in iridescent scales of butterfly Ornithoptera. RSC Advances, 2014, 4, 51865-51871.	3.6	15
432	Superelasticity of NiTi–Nb metallurgical bonding via nanoindentation observation. Materials Letters, 2015, 161, 255-258.	2.6	15

#	Article	IF	Citations
433	Longitudinal splitting versus sequential unzipping of thick-walled carbon nanotubes: Towards controllable synthesis of high-quality graphitic nanoribbons. Carbon, 2016, 110, 480-489.	10.3	15
434	Heterostructured bulk aluminum with controllable gradient structure: Fabrication strategy and deformation mechanisms. Scripta Materialia, 2021, 196, 113762.	5.2	15
435	Mechanical Robustness of Metal Nanocomposites Rendered by Graphene Functionalization. Nano Letters, 2021, 21, 5706-5713.	9.1	15
436	Enhanced through-plane thermal conductivity and mechanical properties of vertically aligned graphene nanoplatelet@graphite flakes reinforced aluminum composites. Diamond and Related Materials, 2020, 108, 107929.	3.9	15
437	Oxidation behavior of in situ synthesized (TiB+TiC)/Ti–Al composites. Materials Letters, 2006, 60, 2339-2345.	2.6	14
438	Preparation of Porous Fe from Biomorphic Fe ₂ O ₃ Precursors with Wood Templates. Materials Transactions, 2007, 48, 878-881.	1.2	14
439	Thermal conductivity and thermal expansions of aluminum/carbon composites based on wood templates. Materials Letters, 2007, 61, 1849-1854.	2.6	14
440	Microstructure and superelasticity of in situ synthesized (TiB+La2O3)/Ti-alloy composites with different mass fraction of LaB6. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 1058-1062.	5.6	14
441	Controllable reflection properties of nanocomposite photonic crystals constructed by semiconductor nanocrystallites and natural periodic bio-matrices. Nanoscale, 2010, 2, 2203.	5.6	14
442	In situ formation and assembly of CdS nanocrystallites into polyhedrons on Eggshell membrane at room temperature. Applied Physics A: Materials Science and Processing, 2012, 106, 93-97.	2.3	14
443	Wettability gradient colorimetric sensing by amphiphilic molecular response. Chemical Communications, 2013, 49, 728-730.	4.1	14
444	Fabrication and characterization of laminated Ti-(TiB+La 2 O 3)/Ti composite. Progress in Natural Science: Materials International, 2015, 25, 453-459.	4.4	14
445	Construction of SnO2â^'Graphene Composite with Half-Supported Cluster Structure as Anode toward Superior Lithium Storage Properties. Scientific Reports, 2017, 7, 3276.	3.3	14
446	Photonic-structured fibers assembled from cellulose nanocrystals with tunable polarized selective reflection. Nanotechnology, 2018, 29, 325604.	2.6	14
447	Effect of thermal cycling on the mechanical properties of carbon nanotubes reinforced copper matrix nanolaminated composites. Materials Science & Diplement A: Structural Materials: Properties, Microstructure and Processing, 2019, 739, 132-139.	5.6	14
448	The mechanisms and environmental implications of engineered nanoparticles dispersion. Science of the Total Environment, 2020, 722, 137781.	8.0	14
449	Mechanical behavior and interfacial micro-zones of SiCp(CNT) hybrid reinforced aluminum matrix composites. Materials Characterization, 2022, 189, 111982.	4.4	14
450	Simultaneously improving the strength and ductility of the as-sintered (TiB+La2O3)/Ti composites by in-situ planting ultra-fine networks into the composite powder. Scripta Materialia, 2022, 218, 114835.	5.2	14

#	Article	IF	CITATIONS
451	Mechanical Properties of <1>in situ 1 Synthesized Titanium Matrix Composites at Elevated Temperature. Materials Transactions, 2003, 44, 2282-2287.	1.2	13
452	Biomimetic fabrication of WO3 for water splitting under visible light with high performance. Journal of Nanoparticle Research, 2013, 15, 1.	1.9	13
453	Fabrication of Fe-wings used for micro imprinting with a natural butterfly wing structure by in situ carbothermic reduction. Journal of Materials Chemistry B, 2013, 1, 1673.	5.8	13
454	Evolution, Control, and Effects of Interface in CNT/Al Composites: a Review. Acta Metallurgica Sinica (English Letters), 2014, 27, 839-843.	2.9	13
455	The elastic and geometrical properties of micro- and nano-structured hierarchical random irregular honeycombs. Journal of Materials Science, 2014, 49, 5690-5702.	3.7	13
456	Structural modeling and mechanical behavior of Metal-Porous-Polymer-Composites (MPPCs) with different polymer volume fractions. Composite Structures, 2016, 153, 673-681.	5.8	13
457	Effects of carbon nanotube content on morphology of SiCp(CNT) hybrid reinforcement and tensile mechanical properties of SiCp(CNT)/Al composites. Journal of Materials Research, 2017, 32, 1239-1247.	2.6	13
458	A low-cost, high-efficiency light absorption structure inspired by the Papilio ulysses butterfly. RSC Advances, 2017, 7, 22749-22756.	3.6	13
459	Enhanced photocatalytic hydrogen production on three-dimensional gold butterfly wing scales/CdS nanoparticles. Applied Surface Science, 2018, 427, 807-812.	6.1	13
460	Ordering of Hollow Ag-Au Nanospheres with Butterfly Wings as a Bio-template. Scientific Reports, 2018, 8, 9261.	3.3	13
461	Synthesis and microstructure analysis of morph-genetic materials. Science in China Series D: Earth Sciences, 2004, 47, 470.	0.9	12
462	Chemical reaction in Al matrix composite reinforced with SiC _p coated by SnO ₂ . Journal of Materials Science, 2004, 39, 3689-3694.	3.7	12
463	Electromagnetic nanocomposites prepared by cryomilling of polyaniline and Fe nanoparticles. Journal of Polymer Science, Part B: Polymer Physics, 2008, 46, 1571-1576.	2.1	12
464	Development of processing maps for 3vol.% TiCp/AZ91D composites material. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 4687-4693.	5.6	12
465	High volume fraction and uniform dispersion of carbon nanotubes in aluminium powders. Micro and Nano Letters, 2010, 5, 379.	1.3	12
466	Influence of forging deformation and heat treatment on microstructure of Ti–xNb–3Zr–2Ta alloys. Materials Science and Engineering C, 2012, 32, 126-132.	7.3	12
467	Synthesis of BiVO ₄ @C Core–Shell Structure on Reduced Graphene Oxide with Enhanced Visibleâ€Light Photocatalytic Activity. ChemSusChem, 2015, 8, 2719-2726.	6.8	12
468	Efficient visible light photocatalytic water oxidation on Zn3(OH)2V2O7·2H2O nanoplates: Effects of exposed facet and local crystal structure distortion. Applied Surface Science, 2015, 346, 115-123.	6.1	12

#	Article	IF	Citations
469	Effect of alumina coating and extrusion deformation on microstructures and thermal properties of short carbon fibreâ€"Al composites. Bulletin of Materials Science, 2018, 41, 1.	1.7	12
470	Orientation-Dependent Tensile Behavior of Nanolaminated Graphene-Al Composites: An In Situ Study. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49, 5229-5234.	2.2	12
471	Largeâ€Area 3D Hierarchical Superstructures Assembled from Colloidal Nanoparticles. Small, 2019, 15, 1805308.	10.0	12
472	Strength-conductivity synergy in cold-drawn reduced graphene oxide (RGO)-aluminum composite wires for electrical applications. Materials and Design, 2021, 209, 109951.	7.0	12
473	In situ synthesized (TiB + Y2O3)/Ti composites. Journal of Materials Science Letters, 2003, 22, 877-879.	0.5	11
474	Electromagnetic shielding capacity of carbon matrix composites made from nickel-loaded black rice husk. Journal of Materials Science, 2004, 39, 6209-6214.	3.7	11
475	Change in Microstructures and Mechanical Properties of Biomedical Ti-Nb-Ta-Zr System Alloy through Cross-Rolling. Materials Transactions, 2008, 49, 1791-1795.	1.2	11
476	Patterning and photoluminescence of CdS nanocrystallites on silk fibroin fiber. Journal of Nanoparticle Research, 2010, 12, 347-356.	1.9	11
477	Selective encapsulation of dye molecules in dendrimer/polymer multilayer microcapsules by DNA hybridization. Journal of Materials Chemistry, 2010, 20, 1438.	6.7	11
478	Bioinspired ultraviolet reflective photonic structures derived from butterfly wings (Euploea). Applied Physics Letters, 2011, 99, 163705.	3.3	11
479	In situ bioinspired synthesis of silver chloride nanocrystals on silk fibroin fibers. Applied Physics A: Materials Science and Processing, 2011, 102, 429-434.	2.3	11
480	Replication of polypyrrole with photonic structures from butterfly wings as biosensor. Materials Chemistry and Physics, 2012, 131, 706-713.	4.0	11
481	Efficient network-matrix architecture for general flow transport inspired by natural pinnate leaves. Soft Matter, 2014, 10, 8442-8447.	2.7	11
482	Microstructure and mechanical properties of (TiB+La2O3)/Ti composites heat treated at different temperatures. Transactions of Nonferrous Metals Society of China, 2014, 24, 1737-1743.	4.2	11
483	Optical Performance Study of Gyroidâ€Structured TiO ₂ Photonic Crystals Replicated from Natural Templates Using a Solâ€Gel Method. Advanced Optical Materials, 2018, 6, 1800064.	7.3	11
484	A bioinspired solar evaporator for continuous and efficient desalination by salt dilution and secretion. Journal of Materials Chemistry A, 2021, 9, 17985-17993.	10.3	11
485	Structural modelling and mechanical behaviors of graphene/carbon nanotubes reinforced metal matrix composites via atomic-scale simulations: A review. Composites Part C: Open Access, 2021, 4, 100120.	3.2	11
486	Fabrication, mechanical and thermal behaviors of antiperovskite manganese nitride Mn3.1Zn0.5Sn0.4N reinforced aluminum matrix composites. Composites Part B: Engineering, 2021, 223, 109080.	12.0	11

#	Article	IF	Citations
487	Synergistic effects of tungsten coating on the microstructure, thermophysical and mechanical properties of graphite flakes reinforced copper matrix composites. Journal of Alloys and Compounds, 2022, 916, 165318.	5.5	11
488	Oxidation behavior of in situ synthesized TiB/Ti-Al composite. Journal of Materials Science, 2005, 40, 6553-6558.	3.7	10
489	Bio-Inspired Functional Materials Templated From Nature Materials. KONA Powder and Particle Journal, 2010, 28, 116-130.	1.7	10
490	DNA hybridization induced selective encapsulation of small dye molecules in dendrimer based microcapsules. Analyst, The, 2010, 135, 2939.	3.5	10
491	Sonochemical replication of chloroplast with titania for light harvesting. Ultrasonics Sonochemistry, 2011, 18, 1043-1047.	8.2	10
492	Diode-side-pumped 1123nm Nd:YAG ceramic laser. Ceramics International, 2012, 38, 6969-6973.	4.8	10
493	Effect of Aging Treatment on Microstructure and Mechanical Properties of Ti27Nb2Ta3Zr & Camp; beta; Titanium Alloy for Implant Applications. Materials Transactions, 2014, 55, 141-146.	1.2	10
494	Angle-independent pH-sensitive composites with natural gyroid structure. Scientific Reports, 2017, 7, 42207.	3.3	10
495	Young's Modulus Enhancement and Measurement in CNT/Al Nanocomposites. Acta Metallurgica Sinica (English Letters), 2018, 31, 1121-1129.	2.9	10
496	Electrochemical determination of urinary dopamine from neuroblastoma patients based on Cu nanoplates encapsulated by alginate-derived carbon. Journal of Electroanalytical Chemistry, 2019, 853, 113560.	3.8	10
497	Fabrication, mechanical and thermal properties of tungsten-copper coated graphite flakes reinforced copper matrix composites. Materials and Design, 2022, 216, 110526.	7.0	10
498	Structural changes in poly(ethylene terephthalate) induced by cryomilling and ambimilling. Journal of Polymer Science, Part B: Polymer Physics, 2006, 44, 986-993.	2.1	9
499	Meso/Macroporous Ceria with Enhanced Surface Oxygen Activity <i>via</i> Plantâ€Leaf Mineralization. Journal of the American Ceramic Society, 2010, 93, 40-43.	3.8	9
500	Bio-inspired synthesis of ZnO polyhedral single crystals underÂeggshell membrane direction. Applied Physics A: Materials Science and Processing, 2011, 104, 269-274.	2.3	9
501	Structural and optical properties of porous iron oxide. Solid State Communications, 2011, 151, 802-805.	1.9	9
502	Synthesis of naturally cross-linked polycrystalline ZrO2 hollow nanowires using butterfly as templates. Materials Chemistry and Physics, 2012, 134, 16-20.	4.0	9
503	Biotemplated Hierarchical Porous Material: The Positively Charged Leaf. Chemistry - A European Journal, 2013, 19, 4742-4747.	3.3	9
504	Efficient photochemical hydrogen production under visible-light over artificial photosynthetic systems. International Journal of Hydrogen Energy, 2013, 38, 8639-8647.	7.1	9

#	Article	IF	Citations
505	Composite Materials with Enhanced Conductivities. Advanced Engineering Materials, 2016, 18, 1174-1180.	3.5	9
506	Nano-structured interpenetrating composites with enhanced Young's modulus and desired Poisson's ratio. Composites Part A: Applied Science and Manufacturing, 2016, 91, 195-202.	7.6	9
507	Artificial ceramic diatoms with multiscale photonic architectures via nanoimprint lithography for CO ₂ photoreduction. Journal of the American Ceramic Society, 2019, 102, 4678-4687.	3.8	9
508	Synthesis and Applications of Porous Glass. Journal of Shanghai Jiaotong University (Science), 2019, 24, 681-698.	0.9	9
509	Auxetic interpenetrating composites: A new approach to non-porous materials with a negative or zero Poisson's ratio. Composite Structures, 2020, 243, 112195.	5.8	9
510	A Facile Fabrication of Fe ₃ O ₄ /Graphene Nanosheets for Lithium-Ion Battery. Science of Advanced Materials, 2014, 6, 283-289.	0.7	9
511	Effect of reinforcement volume fraction and T6 heat treatment on microstructure, thermal and mechanical properties of mesophase pitch-based carbon fiber reinforced aluminum matrix composites. Materials Science & Description A: Structural Materials: Properties, Microstructure and Processing, 2022, 834, 142469.	5.6	9
512	The orientation relationship between TiB and RE2O3 in in situ synthesized titanium matrix composites. Journal of Alloys and Compounds, 2005, 392, 282-284.	5.5	8
513	Assembly and Formation of Biomorphic Tin Dioxide by a Biomimetic Sol–Gel Approach Involving Glycoprotein. European Journal of Inorganic Chemistry, 2007, 2007, 2265-2273.	2.0	8
514	Thermal stability of in situ synthesized high temperature titanium matrix composites. Journal of Alloys and Compounds, 2009, 467, 135-141.	5 . 5	8
515	Work of Adhesion in Al/SiC Composites with Alloying Element Addition. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2013, 44, 5192-5201.	2.2	8
516	Microstructure and mechanical properties of GTA weldments of titanium matrix composites prepared with or without current pulsing. Transactions of Nonferrous Metals Society of China, 2014, 24, 1393-1399.	4.2	8
517	Discharge and densification in the spark plasma sintering of quasicrystal particles. Journal of Materials Science, 2019, 54, 8727-8742.	3.7	8
518	Microstructural characterization, mechanical properties and thermal expansion of antiperovskite manganese nitride Mn3.1Zn0.5Sn0.4N fabricated by combing vacuum sintering and spark-plasma sintering. Materials Characterization, 2020, 160, 110100.	4.4	8
519	Effects of graphite flake size on the properties of aligned graphene nanoplatelets covered graphite flakes/aluminum composites. Diamond and Related Materials, 2021, 116, 108381.	3.9	8
520	Enhanced mechanical behavior and fabrication of graphite flakes covered by aligned graphene nanoplatelets reinforced 2A12 aluminum composites. Vacuum, 2021, 188, 110150.	3.5	8
521	Manufacture of Aluminum/Carbon Composites Based on Wood Templates. Materials Transactions, 2005, 46, 1741-1744.	1.2	7
522	Model Prediction of Thermodynamics Activity in Multicomponent Liquid Alloy. Key Engineering Materials, 2006, 313, 19-24.	0.4	7

#	Article	IF	Citations
523	Hydrophobic polymers modification of mesoporous silica with large pore size for drug release. Journal of Nanoparticle Research, 2009, 11, 561-568.	1.9	7
524	Thermodynamics and Kinetics to Alloying Addition on In-Situ AlN/Mg Composites Synthesis via Displacement Reactions in Liquid Mg Melt. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2009, 40, 2743-2750.	2.2	7
525	Structural integration design for enhanced photoluminescence in butterfly scales. Soft Matter, 2013, 9, 2614-2620.	2.7	7
526	Infrared-induced variation of the magnetic properties of a magnetoplasmonic film with a 3D sub-micron periodic triangular roof-type antireflection structure. Scientific Reports, 2015, 5, 8025.	3.3	7
527	Nanoprobe-based force spectroscopy as a versatile platform for probing the mechanical adhesion of bacteria. Nanoscale, 2019, 11, 7648-7655.	5.6	7
528	Governing the Inclination Angle of Graphite Flakes in the Graphite Flake/Al Composites by Controlling the Al Particle Size via Flake Powder Metallurgy. Acta Metallurgica Sinica (English Letters), 2020, 33, 649-658.	2.9	7
529	Constructing High-Performance Lithium-Ion Hybrid Capacitors Based on the Electrode Framework Matching Strategy. ACS Applied Energy Materials, 2022, 5, 1963-1971.	5.1	7
530	Bioinspired Porous Anodic Alumina/Aluminum Flake Powder for Multiband Compatible Low Detectability. ACS Applied Materials & Interfaces, 2022, 14, 8464-8472.	8.0	7
531	Bioinspired hierarchical 3D flower-in-ridge hybrid structure for the photodegradation of persistent organic pollutants. Nanoscale, 2022, 14, 8130-8144.	5.6	7
532	Microstructure and Compressive Properties of <l>ln Situ</l> Synthesized (TiB + TiC)/Ti Composites. Materials Transactions, JIM, 2000, 41, 1555-1561.	0.9	6
533	An in situ method to evaluate the interfacial reaction during multiple remelting. Journal of Materials Science Letters, 2001, 20, 1001-1003.	0.5	6
534	Thermal Expansions and Mechanical Properties of Al/C and Al/(SiC+C) Composites Based on Wood Templates. Materials Transactions, 2006, 47, 2576-2581.	1.2	6
535	Effect of Forging Temperature on Microstructure and Mechanical Properties of <i>In Situ</i> (TiB+TiC)/Ti Composites. Materials Transactions, 2006, 47, 1750-1754.	1.2	6
536	Microstructure and Tensile Properties of In Situ Synthesized (TiB+TiC)/Ti-6Al-4V Composites. Key Engineering Materials, 2007, 351, 201-207.	0.4	6
537	Preparation and thermal properties of metal matrix composites with wood-structure. Materials & Design, 2008, 29, 1275-1279.	5.1	6
538	Superplastic deformation of in situ synthesized TiC/7715D matrix composite. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 513-514, 384-388.	5. 6	6
539	Texture Evolution of Hot-Rolled, Near-α-Based Titanium Matrix Composites. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2012, 43, 3257-3263.	2.2	6
540	Epitaxial growth of ZnO layers on (111) GaAs substrates by laser molecular beam epitaxy. Thin Solid Films, 2012, 520, 2663-2666.	1.8	6

#	Article	IF	Citations
541	Influence of disorders on the optical properties of butterfly wing: Analysis with a finite-difference time-domain method. European Physical Journal B, 2013, 86, 1.	1.5	6
542	Photonic structure arrays generated using butterfly wing scales as biological units. Journal of Materials Chemistry B, 2015, 3, 1743-1747.	5.8	6
543	AgBr/diatomite for the efficient visible-light-driven photocatalytic degradation of Rhodamine B. Journal of Nanoparticle Research, 2018, 20, 1.	1.9	6
544	Hot Deformation Behavior and Processing Maps of Diamond/Cu Composites. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49, 2202-2212.	2.2	6
545	Effect of Carbon Element on Mechanical Properties of <i>In Situ</i> 5 vol% TiC/Ti-1100 Composite. Materials Transactions, 2006, 47, 1135-1139.	1.2	5
546	Ternary diffusion coefficientsâ€"Theoretical treatment and application to theIn-situ-reinforced TiB2/Al composite. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2006, 37, 2275-2281.	2.2	5
547	Hot deformation behavior of in situ synthesized Ti composite reinforced with 5Âvol.% (TiBÂ+ÂTiC) particles. Journal of Materials Science, 2007, 42, 6901-6906.	3.7	5
548	Well-aligned ZnO nanorod arrays derived from 2D photonic crystals within peacock feathers. CrystEngComm, 2012, 14, 5262.	2.6	5
549	Fabrication of 3D carbon nanotube/porous carbon hybrid materials. Journal of Materials Science, 2014, 49, 548-557.	3.7	5
550	A photochromic nano-system via self-recovery for stable photocatalytic hydrogen evolution by optimizing TiO ₂ surface energy. RSC Advances, 2015, 5, 15844-15849.	3.6	5
551	Fabrication, thermal expansions, and mechanical properties of carbon/aluminum composites based on wood templates. Journal of Materials Science, 2006, 41, 6095-6099.	3.7	4
552	Effects of Reinforcements on Creep Resistance of Hybrid-Reinforced Titanium Matrix Composites. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2010, 41, 1855-1863.	2.2	4
553	Photonic Crystals: 3D Network Magnetophotonic Crystals Fabricated on Morpho Butterfly Wing Templates (Adv. Funct. Mater. 10/2012). Advanced Functional Materials, 2012, 22, 2071-2071.	14.9	4
554	Temperature Dependence of Tensile Properties and Fracture Behavior of Welded Joints of Titanium Matrix Composites in Gas Tungsten Arc Welding. Materials Transactions, 2013, 54, 2245-2251.	1.2	4
555	Enhanced methanol oxidation performance on platinum with butterfly-scale architectures: toward structural design of efficient electrocatalysts. RSC Advances, 2014, 4, 4072-4076.	3.6	4
556	Bioinspired Au/N-TiO ₂ photocatalyst templated from <i>Zea mays</i> Linn. leaves. Bioinspired, Biomimetic and Nanobiomaterials, 2014, 3, 19-28.	0.9	4
557	Hydrothermal Synthesis Au-Bi2Te3 Nanocomposite Thermoelectric Film with a Hierarchical Sub-Micron Antireflection Quasi-Periodic Structure. International Journal of Molecular Sciences, 2015, 16, 12547-12559.	4.1	4
558	Correlation Between Interfacial Structure and Toughness in SiC-Al Bilayers. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 4800-4805.	2.2	4

#	Article	IF	Citations
559	Defect induced visible-light-activated near-infrared emissions in Gd3â°' <i>x</i> gi>a°' <i>y</i> fi>a°' <i>z</i> fi>ybxBiyErzGa5O12. Journal of Applied Physics, 2017, 122, .	2.5	4
560	Influences of Interfaces on Dynamic Recrystallization and Texture Evolution During Hot Rolling of Graphene Nanoribbon/Cu Composite. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49, 6401-6415.	2.2	4
561	Naturally safe: Cellular noise for document security. Journal of Biophotonics, 2019, 12, e201900218.	2.3	4
562	Superexchange interaction contribution to the Zeeman splitting of the intra-4f-shell luminescence band in Gd3Ga4FeO12: Yb3+, Er3+. Optical Materials Express, 2018, 8, 3338.	3.0	4
563	Biomimetic and Bioinspired Photonic Structures. Nano Advances, 2016, , .	0.4	4
564	The near-isotropic elastic properties of interpenetrating composites reinforced by regular fibre-networks. Materials and Design, 2022, 221, 110923.	7.0	4
565	Title is missing!. Journal of Materials Science Letters, 2002, 21, 1157-1161.	0.5	3
566	Temperature dependence of melt structure in SiCp/Al composites above the liquidus. Materials Chemistry and Physics, 2005, 93, 208-216.	4.0	3
567	Light Weight and High Modulus Aluminum Matrix Composite and its Application into Aerospace. Materials Science Forum, 2007, 546-549, 1551-1554.	0.3	3
568	Wettability and its Improvement at Al/SiC Interfaces. Key Engineering Materials, 0, 351, 52-57.	0.4	3
569	Improvement in Hot Workability of Titanium Matrix Composite by Thermohydrogen Treatment. Materials Science Forum, 2010, 654-656, 835-838.	0.3	3
570	Constructing inverse V-type TiO2-based photocatalyst via bio-template approach to enhance the photosynthetic water oxidation. Applied Surface Science, 2015, 347, 368-377.	6.1	3
571	Bio-templated germanium photonic crystals by a facile liquid phase deposition process. RSC Advances, 2016, 6, 73156-73159.	3.6	3
572	Germanium-dioxide periodic nanostructure from inverse replication of butterfly wings. Materials Letters, 2018, 227, 55-57.	2.6	3
573	Mapping thermal radiation in plasmonic structures. Chemical Physics, 2019, 526, 110423.	1.9	3
574	Gyroid-structured Auâ€"Ag periodic bimetal materials for ultrasensitive SERS detection. Journal of Materials Chemistry C, 2021, 9, 9137-9141.	5.5	3
575	Morph-Genetic Materials Inspired from Butterfly Wing Scales. Advanced Topics in Science and Technology in China, 2012, , 75-122.	0.1	3
576	First-Principles Investigation of the Interfacial Stability, Precipitate Formation, and Mechanical Behavior of Al3Li/Al3Zr/Al Interfaces. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2022, 53, 1308-1321.	2.2	3

#	Article	IF	Citations
577	Microstructure and Properties Analysis of Composites Based on Woodceramics. Key Engineering Materials, 2003, 249, 31-36.	0.4	2
578	Recycling Mechanism of Discontinuously Reinforced Al Matrix Composites. Materials Science Forum, 2005, 502, 205-210.	0.3	2
579	Assembly of metallic nanoparticles with controllable size in nanopores of biomorphic oxide fibers templated by cotton tissue. Journal of Materials Research, 2007, 22, 755-762.	2.6	2
580	A model for work of solid–liquid adhesion in multicomponent melts. Acta Materialia, 2009, 57, 3623-3632.	7.9	2
581	The Effect of Heat Treatment on Microstructure and Fracture Toughness of <1>In Situ 1 Synthesized (TiB+La ₂ O ₃)/Ti Composite. Materials Transactions, 2011, 52, 1728-1733.	1.2	2
582	Optical characters measurement and simulation of 2D cross grating microstructures of butterfly wings. International Journal of Precision Engineering and Manufacturing, 2012, 13, 1647-1653.	2.2	2
583	Cyclic voltammogram on ridge/pore array architectured electrode inspired by butterfly-wings. Pure and Applied Chemistry, 2015, 87, 815-825.	1.9	2
584	Indentation-Enabled In Situ Mechanical Characterization of Micro/Nanopillars in Electron Microscopes. Jom, 2018, 70, 487-493.	1.9	2
585	Room and high-temperature mechanical behavior of reduced graphene oxideâ€'aluminum (RGO-Al) composite wire conductors â€" A micro-mechanical investigation. Materials Characterization, 2022, 189, 111951.	4.4	2
586	Optical Optimization with Microstructure Evolution Inspired from Lepidopteran Scales. Advanced Optical Materials, 2022, 10, .	7.3	2
587	Experimental study on elastic modulus and damping capacity of woodceramics. International Journal of Materials Research, 2002, 93, 559-564.	0.8	1
588	Thermodynamics of the Effect of Alloying Additions on In-Situ Reaction to Synthesize TiC/Mg Composites. Key Engineering Materials, 2007, 351, 161-165.	0.4	1
589	Bacteria-Templated Synthesis of ZnO Hollow Spheres via a Facile Hydrothermal Method. Materials Science Forum, 2007, 561-565, 781-786.	0.3	1
590	Hot-Tensile Properties of <i>In Situ</i> Synthesized Multiple-Reinforced (TiB+TiC+Nd ₂ O ₃)/Ti-Alloy Composites. Materials Transactions, 2007, 48, 826-831.	1.2	1
591	Mechanical Properties and Strengthening Mechanisms of <i>In Situ</i> (TiB+TiC)/Ti-1100 Composite at Elevated Temperature. Materials Science Forum, 2011, 686, 727-732.	0.3	1
592	Unique reflection properties of CdS/butterfly wings nanocomposites. Bioinspired, Biomimetic and Nanobiomaterials, 2012, 1, 38-47.	0.9	1
593	An ancient method-inspired route for fast fabrication of †PbS bird feathers'. MRS Communications, 2013, 3, 61-65.	1.8	1
594	Local Bi–O bonds correlated with infrared emission properties in triply doped Gd2.95Yb0.02Bi0.02Er0.01Ga5O12via temperature-dependent Raman spectra and x-ray absorption fine structure analysis. Journal of Physics Condensed Matter, 2018, 30, 125901.	1.8	1

#	Article	IF	Citations
595	An Approach to Improve the Tensile Ductility of Particle Reinforced Ultrafine-Grained Metallic Composite by Nano-Dispersion Toughening. , 2013, , 1379-1385.		1
596	Functional Materials Templated from Natural Plants. Advanced Topics in Science and Technology in China, 2012, , 1-74.	0.1	1
597	An Overview of the Study on Morph-Genetic Materials in State Key Lab of Metal Matrix Composites, Shanghai Jiao Tong University. Key Engineering Materials, 2006, 313, 7-12.	0.4	О
598	Prediction of the Effect of Alloying Elements on In Situ Reaction in Synthesizing (AlN+Mg ₂ Si)/Mg Composites. Key Engineering Materials, 2007, 351, 156-160.	0.4	0
599	In Situ Synthesis of Hierarchical Nanocomposites Utilizing Redox-Active Biofibers by a Novel Biogenic Technique. Materials Science Forum, 2007, 561-565, 787-790.	0.3	О
600	In Situ Synthesis of Hybrid-Reinforced Titanium Matrix Composites. Solid State Phenomena, 2007, 127, 155-160.	0.3	0
601	Biomimetic Polypyrrole with Hierarchical Structures and Investigation of its Bio-Sensing Properties. Key Engineering Materials, 0, 531-532, 559-562.	0.4	0
602	Effect of Ta addition on mechanical properties of 7715D titanium alloy. Transactions of Nonferrous Metals Society of China, 2012, 22, 516-520.	4.2	0
603	Study of Wear Properties of <i>In Situ</i> TiB/TiC Reinforced Ti1100 Composites. Key Engineering Materials, 0, 550, 107-113.	0.4	0
604	Surface-Enhanced Raman Scattering (SERS) Mechanisms of Metal Scale Replicas. SpringerBriefs in Materials, 2015, , 69-88.	0.3	0
605	Uniform Spherical Graphene/Monocrystal-Copper Powder Fabricated by the Low Wettability of Liquid/Solid Interface. KONA Powder and Particle Journal, 2019, 36, 224-231.	1.7	O
606	High Reliable Nanofiller Reinforced Composite Based Flexible Heat Sink for Wearable Devices with Micromachining Technology. , 2021, , .		0
607	Morph-Genetic Composites. Advanced Topics in Science and Technology in China, 2012, , 193-245.	0.1	O
608	Morph-Genetic Materials Inspired Diverse Hierarchical Bio-Architectures. Advanced Topics in Science and Technology in China, 2012, , 123-191.	0.1	0
609	Nanoparticle Controllable Assembly. , 2014, , 1-21.		O
610	Surface-Enhanced Raman Scattering (SERS) Performance of Metal Scale Replicas. SpringerBriefs in Materials, 2015, , 55-68.	0.3	0
611	All alginate-derived high-performance T-Nb ₂ O ₅ /C//seaweed carbon Li-ion capacitors. RSC Advances, 2022, 12, 5743-5748.	3.6	0
612	Synthesis of hydrous RuO2 anchored on seaweed-derived porous carbon for high-performance electrochemical capacitors. Materials Letters, 2022, 318, 132182.	2.6	0