Paola Barbara Arimondo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/83905/publications.pdf

Version: 2024-02-01

118 papers 4,202 citations

34 h-index 59 g-index

125 all docs

125
docs citations

125 times ranked 4762 citing authors

#	Article	IF	CITATIONS
1	Towards the sustainable discovery and development of new antibiotics. Nature Reviews Chemistry, 2021, 5, 726-749.	30.2	439
2	The triple helix: 50 years later, the outcome. Nucleic Acids Research, 2008, 36, 5123-5138.	14.5	302
3	The timeline of epigenetic drug discovery: from reality to dreams. Clinical Epigenetics, 2019, 11, 174.	4.1	275
4	DNA methylation inhibitors in cancer: Recent and future approaches. Biochimie, 2012, 94, 2280-2296.	2.6	192
5	DNA Methylation Targeting: The DNMT/HMT Crosstalk Challenge. Biomolecules, 2017, 7, 3.	4.0	113
6	Targeting DNA Methylation with Small Molecules: What's Next?. Journal of Medicinal Chemistry, 2015, 58, 2569-2583.	6.4	112
7	Selective Non-nucleoside Inhibitors of Human DNA Methyltransferases Active in Cancer Including in Cancer Stem Cells. Journal of Medicinal Chemistry, 2014, 57, 701-713.	6.4	111
8	Thirty years of Escherichia coli DNA gyrase: From in vivo function to single-molecule mechanism. Biochimie, 2007, 89, 490-499.	2.6	103
9	Mechanistic Insights on the Inhibition of C5 DNA Methyltransferases by Zebularine. PLoS ONE, 2010, 5, e12388.	2.5	96
10	DNA methyltransferase inhibitors in cancer: a chemical and therapeutic patent overview and selected clinical studies. Expert Opinion on Therapeutic Patents, 2012, 22, 1427-1442.	5.0	90
11	DNA methyltransferase inhibitors in cancer: From pharmacology to translational studies. Biochemical Pharmacology, 2017, 129, 1-13.	4.4	86
12	Synthesis and Evaluation of Analogues of <i>N</i> -Phthaloyl- <scp>I</scp> -tryptophan (RG108) as Inhibitors of DNA Methyltransferase 1. Journal of Medicinal Chemistry, 2014, 57, 421-434.	6.4	80
13	C5â€DNA Methyltransferase Inhibitors: From Screening to Effects on Zebrafish Embryo Development. ChemBioChem, 2011, 12, 1337-1345.	2.6	69
14	Synthesis andÂbiological activity ofÂ6H-isoindolo[2,1-a]indol-6-ones, analogues ofÂbatracylin, andÂrelated compounds. European Journal of Medicinal Chemistry, 2006, 41, 379-386.	5 . 5	67
15	Energetics of strand-displacement reactions in triple helices: a spectroscopic study. Journal of Molecular Biology, 1999, 291, 1035-1054.	4.2	56
16	Rapid Synthesis of New DNMT Inhibitors Derivatives of Procainamide. ChemBioChem, 2012, 13, 157-165.	2.6	51
17	Identification of Novel Inhibitors of DNA Methylation by Screening of a Chemical Library. ACS Chemical Biology, 2013, 8, 543-548.	3.4	51
18	New Insights on the Mechanism of Quinoline-based DNA Methyltransferase Inhibitors. Journal of Biological Chemistry, 2015, 290, 6293-6302.	3.4	50

#	Article	IF	CITATIONS
19	Design, Synthesis and Biological Evaluation of 4â€Aminoâ€ <i>N</i> à€(4â€aminophenyl)benzamide Analogues of Quinolineâ€Based SGIâ€1027 as Inhibitors of DNA Methylation. ChemMedChem, 2014, 9, 590-601.	3.2	49
20	Unusual DNA Conformations: Implications for Telomeres. Anti-Cancer Agents in Medicinal Chemistry, 2002, 2, 627-644.	7.0	47
21	Design and Optimization of Camptothecin Conjugates of Triple Helix-forming Oligonucleotides for Sequence-specific DNA Cleavage by Topoisomerase I. Journal of Biological Chemistry, 2002, 277, 3132-3140.	3.4	46
22	The DNMT3A R882H mutant displays altered flanking sequence preferences. Nucleic Acids Research, 2018, 46, 3130-3139.	14.5	44
23	Identification of novel quinazoline derivatives as potent antiplasmodial agents. European Journal of Medicinal Chemistry, 2019, 161, 277-291.	5.5	44
24	Chemical Modification of the Third Strand: Differential Effects on Purine and Pyrimidine Triple Helix Formationâ€. Biochemistry, 2002, 41, 357-366.	2.5	42
25	Synthesis and Biological Activity of Sulfonamide Derivatives of Epipodophyllotoxin. Journal of Medicinal Chemistry, 2004, 47, 2365-2374.	6.4	42
26	Synthesis and Biological Study of a New Series of 4 -Demethylepipodophyllotoxin Derivatives. Journal of Medicinal Chemistry, 2005, 48, 593-603.	6.4	42
27	Microtubule-Driven Stress Granule Dynamics Regulate Inhibitory Immune Checkpoint Expression in T Cells. Cell Reports, 2019, 26, 94-107.e7.	6.4	42
28	Combined analysis of DNA methylation and cell cycle in cancer cells. Epigenetics, 2015, 10, 82-91.	2.7	41
29	Rational Design of Bisubstrate-Type Analogues as Inhibitors of DNA Methyltransferases in Cancer Cells. Journal of Medicinal Chemistry, 2017, 60, 4665-4679.	6.4	41
30	HU binds and folds single-stranded DNA. Nucleic Acids Research, 2007, 36, 1026-1036.	14.5	40
31	DNA Methyltransferase Assays. Methods in Molecular Biology, 2011, 791, 157-177.	0.9	39
32	Development of a universal radioactive DNA methyltransferase inhibition test for high-throughput screening and mechanistic studies. Nucleic Acids Research, 2013, 41, e185-e185.	14.5	37
33	Triple Helix Formation by (G,A)-Containing Oligonucleotides:  Asymmetric Sequence Effect. Biochemistry, 1998, 37, 16627-16635.	2.5	36
34	Properly Substituted Analogues of BIX-01294 Lose Inhibition of G9a Histone Methyltransferase and Gain Selective Anti-DNA Methyltransferase 3A Activity. PLoS ONE, 2014, 9, e96941.	2.5	35
35	A directional nucleation-zipping mechanism for triple helix formation. Nucleic Acids Research, 2002, 30, 5407-5415.	14.5	34
36	DNA methylation associated with polycomb repression in retinoic acid receptor \hat{l}^2 silencing. FASEB Journal, 2013, 27, 1468-1478.	0.5	34

#	Article	IF	Citations
37	Cytisine-like alkaloids from Ormosia hosiei Hemsl. & E.H. Wilson. Phytochemistry, 2014, 107, 97-101.	2.9	33
38	A Quinoline-Based DNA Methyltransferase Inhibitor as a Possible Adjuvant in Osteosarcoma Therapy. Molecular Cancer Therapeutics, 2018, 17, 1881-1892.	4.1	33
39	Triplex Formation on DNA Targets: How To Choose the Oligonucleotide. Biochemistry, 2008, 47, 12277-12289.	2.5	32
40	Pyrimidine Morpholino Oligonucleotides Form a Stable Triple Helix in the Absence of Magnesium Ions. Biochemical and Biophysical Research Communications, 2000, 270, 363-369.	2.1	31
41	Preparation and characterization of dialkylcarbamato derivatives of niobium and tantalum. Journal of the Chemical Society Dalton Transactions, 1996, , 311-319.	1.1	30
42	Recognition and cleavage of DNA by rebeccamycin- or benzopyridoquinoxaline conjugated of triple helix-forming oligonucleotides. Bioorganic and Medicinal Chemistry, 2000, 8, 777-784.	3.0	30
43	Synergistic chromatin repression of the tumor suppressor geneRARBin human prostate cancers. Epigenetics, 2014, 9, 477-482.	2.7	30
44	Identification of a novel quinoline-based DNA demethylating compound highly potent in cancer cells. Clinical Epigenetics, 2019, 11, 68.	4.1	30
45	Exploring the Cellular Activity of Camptothecin-Triple-Helix-Forming Oligonucleotide Conjugates. Molecular and Cellular Biology, 2006, 26, 324-333.	2.3	27
46	Molecular basis of the targeting of topoisomerase II-mediated DNA cleavage by VP16 derivatives conjugated to triplex-forming oligonucleotides. Nucleic Acids Research, 2006, 34, 1900-1911.	14.5	27
47	DNA Methyltransferase Inhibitors: Development and Applications. Advances in Experimental Medicine and Biology, 2016, 945, 431-473.	1.6	26
48	Preparation of phenylethylbenzamide derivatives as modulators of DNMT3 activity. MedChemComm, 2013, 4, 1562.	3.4	24
49	Hijacking DNA methyltransferase transition state analogues to produce chemical scaffolds for PRMT inhibitors. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170072.	4.0	24
50	Targeting topoisomerase I cleavage to specific sequences of DNA by triple helix-forming oligonucleotide conjugates. A comparison between a rebeccamycin derivative and camptothecin. Comptes Rendus De L'Académie Des Sciences Série 3, Sciences De La Vie, 1999, 322, 785-790.	0.8	23
51	DNA interaction and cytotoxicity of a new series of indolo[2,3-b]quinoxaline and pyridopyrazino[2,3-b]indole derivatives. Chemico-Biological Interactions, 2001, 138, 59-75.	4.0	23
52	Dichapetalins from Dichapetalum species and their cytotoxic properties. Phytochemistry, 2013, 94, 184-191.	2.9	22
53	Inhibition studies of DNA methyltransferases by maleimide derivatives of RG108 as non-nucleoside inhibitors. Future Medicinal Chemistry, 2017, 9, 1465-1481.	2.3	22
54	DNA Methylation Bisubstrate Inhibitors Are Fast-Acting Drugs Active against Artemisinin-Resistant <i>Plasmodium falciparum</i> Parasites. ACS Central Science, 2020, 6, 16-21.	11.3	22

#	Article	IF	CITATIONS
55	Directing Topoisomerase I Mediated DNA Cleavage to Specific Sites by Camptothecin Tethered to Minorand Major-Groove Ligands. Angewandte Chemie - International Edition, 2001, 40, 3045-3048.	13.8	21
56	Synthesis of novel 3-halo-3-nitroflavanones and their activities as DNA methyltransferase inhibitors in cancer cells. European Journal of Medicinal Chemistry, 2020, 186, 111829.	5.5	21
57	Synthesis and Antiproliferative Activity of Basic Ethers of 1,2-Dihydropyrrolo[1,2- <i>>a</i> indole, 6 <i>H</i> indole, 6 indole, 6 indo	1.5	20
58	Single-molecule observations of topotecan-mediated TopIB activity at a unique DNA sequence. Nucleic Acids Research, 2008, 36, 2301-2310.	14.5	20
59	The past and presence of gene targeting: from chemicals and DNA via proteins to RNA. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170077.	4.0	20
60	Natural Products and Chemical Biology Tools: Alternatives to Target Epigenetic Mechanisms in Cancers. Chemical Record, 2018, 18, 1854-1876.	5.8	20
61	Synthesis and Crystal Structure of a Self-Assembled, Octanuclear Oxo-Tantalum(V) Derivative Containing the First Example of a Transition Metal M8($\hat{l}\frac{1}{4}$ -O)12Cage. Inorganic Chemistry, 1998, 37, 5507-5511.	4.0	19
62	Design and synthesis of new non nucleoside inhibitors of DNMT3A. Bioorganic and Medicinal Chemistry, 2015, 23, 5946-5953.	3.0	19
63	Potency of inhibition of human DNA topoisomerase I by flavones assessed through physicochemical parameters. Free Radical Biology and Medicine, 2011, 51, 1406-1410.	2.9	18
64	Identification of epigenetic factors regulating the mesenchyme to epithelium transition by RNA interference screening in breast cancer cells. BMC Cancer, 2016, 16, 700.	2.6	18
65	Malaria Parasite Stress Tolerance Is Regulated by DNMT2-Mediated tRNA Cytosine Methylation. MBio, 2021, 12, e0255821.	4.1	18
66	Activation of Camptothecin Derivatives by Conjugation to Triple Helix-Forming Oligonucleotidesâ€. Biochemistry, 2005, 44, 4171-4180.	2.5	17
67	Triple Helix-Forming Oligonucleotides Conjugated to Indolocarbazole Poisons Direct Topoisomerase I-Mediated DNA Cleavage to a Specific Site. Bioconjugate Chemistry, 2001, 12, 501-509.	3.6	16
68	Relative DNA binding affinity of helix 3 homeodomain analogues, major groove binders, can be rapidly screened by displacement of prebound ethidium bromide. A comparative study. Organic and Biomolecular Chemistry, 2004, 2, 915.	2.8	16
69	Contributions of the D-Ring to the Activity of Etoposide against Human Topoisomerase Ilα: Potential Interactions with DNA in the Ternary Enzyme–Drug–DNA Complex. Biochemistry, 2011, 50, 5058-5066.	2.5	16
70	Wandering along the epigenetic timeline. Clinical Epigenetics, 2020, 12, 97.	4.1	16
71	Replication-Fork Stalling and Processing at a Single Psoralen Interstrand Crosslink in Xenopus Egg Extracts. PLoS ONE, 2011, 6, e18554.	2.5	16
72	Disruptor of telomeric silencing 1-like (DOT1L): disclosing a new class of non-nucleoside inhibitors by means of ligand-based and structure-based approaches. Journal of Computer-Aided Molecular Design, 2018, 32, 435-458.	2.9	15

#	Article	IF	CITATIONS
73	Detection of competing DNA structures by thermal gradient gel electrophoresis: from self-association to triple helix formation by (G,A)-containing oligonucleotides. Nucleic Acids Research, 2001, 29, 15e-15.	14.5	14
74	Position- and orientation-specific enhancement of topoisomerase I cleavage complexes by triplex DNA structures. Nucleic Acids Research, 2004, 32, 5163-5173.	14.5	14
75	Sequenceâ€specific targeting of IGFâ€i and IGFâ€iR genes by camptothecins. FASEB Journal, 2010, 24, 2235-2244	4.0.5	14
76	Procainamide–SAHA Fused Inhibitors of hHDAC6 Tackle Multidrug-Resistant Malaria Parasites. Journal of Medicinal Chemistry, 2021, 64, 10403-10417.	6.4	14
77	Consequences of combining siRNA-mediated DNA methyltransferase 1 depletion with 5-aza-2′-deoxycytidine in human leukemic KG1 cells. Oncotarget, 2015, 6, 15265-15282.	1.8	14
78	Targeting <i>MDR1</i> Gene: Synthesis and Cellular Study of Modified Daunomycin-Triplex-Forming Oligonucleotide Conjugates Able to Inhibit Gene Expression in Resistant Cell Lines. Molecular Pharmacology, 2008, 73, 1568-1577.	2.3	12
79	Commercial reverse transcriptase as source of false-positive strand-specific RNA detection in human cells. Biochimie, 2011, 93, 1731-1737.	2.6	12
80	Challenges in developing novel DNA methyltransferases inhibitors for cancer therapy. Future Medicinal Chemistry, 2014, 6, 1237-1240.	2.3	12
81	Identification and optimization of hydrazone-gallate derivatives as specific inhibitors of DNA methyltransferase 3A. Future Medicinal Chemistry, 2016, 8, 373-380.	2.3	12
82	Demethylation by low-dose 5-aza-2′-deoxycytidine impairs 3D melanoma invasion partially through miR-199a-3p expression revealing the role of this miR in melanoma. Clinical Epigenetics, 2019, 11, 9.	4.1	12
83	Improved synthesis of daunomycin conjugates with triplex-forming oligonucleotides. The polypurine tract of HIV-1 as a target. Bioorganic and Medicinal Chemistry, 2005, 13, 3209-3218.	3.0	11
84	Novel carbamate derivatives of $4 \cdot \hat{l}^2$ -amino- $4 \hat{a} \in 2$ -O-demethyl-4-desoxypodophyllotoxin as inhibitors of topoisomerase II: synthesis and biological evaluation. Organic and Biomolecular Chemistry, 2005, 3, 1074-1080.	2.8	11
85	The chromosomal protein HMG-D binds to the TAR and RBE RNA of HIV-1. FEBS Letters, 2000, 485, 47-52.	2.8	10
86	Spatial organization of topoisomerase I-mediated DNA cleavage induced by camptothecin-oligonucleotide conjugates. Nucleic Acids Research, 2003, 31, 4031-4040.	14.5	10
87	Targeting Germ Cell Tumors with the Newly Synthesized Flavanone-Derived Compound MLo1302 Efficiently Reduces Tumor Cell Viability and Induces Apoptosis and Cell Cycle Arrest. Pharmaceutics, 2021, 13, 73.	4. 5	10
88	Optimized Synthesis and Enhanced Efficacy of Novel Triplex-Forming Camptothecin Derivatives Based on Gimatecan. Bioconjugate Chemistry, 2009, 20, 666-672.	3.6	8
89	Specific hypomethylated CpGs at thelGF2locus act as an epigenetic biomarker for familial adenomatous polyposis colorectal cancer. Epigenomics, 2010, 2, 365-375.	2.1	8
90	Novel Quinoline Compounds Active in Cancer Cells through Coupled DNA Methyltransferase Inhibition and Degradation. Cancers, 2020, 12, 447.	3.7	8

#	Article	IF	CITATIONS
91	The methylome of Biomphalaria glabrata and other mollusks: enduring modification of epigenetic landscape and phenotypic traits by a new DNA methylation inhibitor. Epigenetics and Chromatin, 2021, 14, 48.	3.9	8
92	Triple Helix-Forming Oligonucleotides Conjugated to New Inhibitors of Topoisomerase II:  Synthesis and Binding Properties. Bioconjugate Chemistry, 2005, 16, 873-884.	3.6	7
93	Bisubstrate-Type Chemical Probes Identify GRP94 as a Potential Target of Cytosine-Containing Adenosine Analogs. ACS Chemical Biology, 2020, 15, 952-961.	3.4	7
94	Topoisomerase Action on Short DNA Duplexes Reveals Requirements for Gate and Transfer DNA Segments. Journal of Biological Chemistry, 2006, 281, 25407-25415.	3.4	6
95	Structure-Guided Optimization of DNA Methyltransferase Inhibitors. , 2016, , 53-73.		6
96	Assembly of the Entire Carbon Backbone of a Stereoisomer of the Antitumor Marine Natural Product Hemicalide. Chemistry - A European Journal, 2019, 25, 2745-2749.	3.3	6
97	Epigenetics. Biochimie, 2012, 94, 2191-2192.	2.6	5
98	Semisynthetic neoboutomellerone derivatives as ubiquitin-proteasome pathway inhibitors. Bioorganic and Medicinal Chemistry, 2012, 20, 819-831.	3.0	5
99	The Many Faces of EpigeneticsOxford, December 2017. Epigenetics, 2019, 14, 623-631.	2.7	5
100	Synthesis and Biological Activity of a Cytostatic Inhibitor of MLLr Leukemia Targeting the DOT1L Protein. Molecules, 2021, 26, 5300.	3.8	5
101	Bisubstrate inhibitors: the promise of a selective and potent chemical inhibition of epigenetic $\hat{a} \in \mathbb{T}$ writers $\hat{a} \in \mathbb{T}$. Epigenomics, 2020, 12, 1479-1482.	2.1	5
102	DNA Methylation Analysis of ChIP Products at Single Nucleotide Resolution by Pyrosequencing \hat{A}^{\otimes} . Methods in Molecular Biology, 2015, 1315, 315-333.	0.9	4
103	Triplex- versus Quadruplex-Specific Ligands and Telomerase Inhibition. , 0, , 315-336.		3
104	Sequence-Specific Base Pair Mimics Are Efficient Topoisomerase IB Inhibitors. Biochemistry, 2012, 51, 43-51.	2.5	3
105	Regioselective and efficient halogenation of 4,5-unsubstituted alkyl 3-hydroxypyrrole/3-hydroxythiophene-2-yl-carboxylates. Tetrahedron Letters, 2017, 58, 2537-2541.	1.4	3
106	Study of the Effect of Substituents of ortho-Phenylenediamines in the Opening of Lactones and Lactams for Access to Benzimidazol-2-yl Alkanols and Benzimidazol-2-yl Alkylamines. Synlett, 2020, 31, 1216-1220.	1.8	3
107	A novel screening strategy to identify histone methyltransferase inhibitors reveals a crosstalk between DOT1L and CARM1. RSC Chemical Biology, 2022, 3, 456-467.	4.1	3
108	Camptothecins for drug design, cancer cell death and gene targeting. , 2008, , 173-197.		2

#	Article	IF	CITATIONS
109	Alternative synthetic route to annulated diaminopyrimidines. Tetrahedron Letters, 2014, 55, 3901-3904.	1.4	2
110	Anti-neoplastic and demethylating activity of a newly synthetized flavanone-derived compound in Renal Cell Carcinoma cell lines. Biomedicine and Pharmacotherapy, 2021, 141, 111681.	5.6	2
111	Targeting DOT1L for mixed-lineage rearranged leukemia. , 2020, , 81-99.		2
112	A New Generation of Cell-Targeted Drugs for Cancer Treatment. , 2014, , 177-191.		1
113	Chemical Compounds Targeting DNA Methylation and Hydroxymethylation. Topics in Medicinal Chemistry, 2019, , 255-286.	0.8	1
114	Identification of Chemical Probes Targeting MBD2. ACS Chemical Biology, 2022, 17, 1415-1426.	3.4	1
115	Introduction "DNA and chromosomes: Physical and biological approaches― Biochimie, 2010, 92, v-vi.	2.6	O
116	Direct Synthesis of Allyl Amines with 2â€Nitrosulfonamide Derivatives via the Tsujiâ€Trost Reaction. ChemistryOpen, 2021, 10, 1166-1169.	1.9	0
117	Abstract 2946: Effects of two novel quinoline-based non-nucleoside DNA methyltransferase inhibitors against bone sarcomas. , 2015, , .		O
118	Quinazoline-based analog of adenine as an antidote against MLL-rearranged leukemia cells: synthesis, inhibition assays and docking studies. Future Medicinal Chemistry, 2022, 14, 557-570.	2.3	0