Jianwei Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8389204/publications.pdf Version: 2024-02-01

LIANNAFI

#	Article	IF	CITATIONS
1	Alleviation of Dendrite Formation on Zinc Anodes via Electrolyte Additives. ACS Energy Letters, 2021, 6, 395-403.	17.4	340
2	Insights on Flexible Zincâ€lon Batteries from Lab Research to Commercialization. Advanced Materials, 2021, 33, e2007548.	21.0	191
3	Multiâ€Scale Investigations of δâ€Ni _{0.25} V ₂ O ₅ ·nH ₂ O Cathode Materials in Aqueous Zincâ€Ion Batteries. Advanced Energy Materials, 2020, 10, 2000058.	19.5	173
4	Enhanced control of self-doping in halide perovskites for improved thermoelectric performance. Nature Communications, 2019, 10, 5750.	12.8	129
5	Engineering Polymer Clue towards 90% Zinc Utilization for 1000 Hours to Make Highâ€Performance Znâ€Ion Batteries. Advanced Functional Materials, 2021, 31, 2107652.	14.9	115
6	Enabling stable MnO ₂ matrix for aqueous zinc-ion battery cathodes. Journal of Materials Chemistry A, 2020, 8, 22075-22082.	10.3	101
7	Rationally Designed Sodium Chromium Vanadium Phosphate Cathodes with Multiâ€Electron Reaction for Fastâ€Charging Sodiumâ€Ion Batteries. Advanced Energy Materials, 2022, 12, .	19.5	71
8	Investigation of a Biomass Hydrogel Electrolyte Naturally Stabilizing Cathodes for Zinc-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 745-754.	8.0	64
9	Defected vanadium bronzes as superb cathodes in aqueous zinc-ion batteries. Nanoscale, 2020, 12, 20638-20648.	5.6	61
10	Natural Clayâ€Based Materials for Energy Storage and Conversion Applications. Advanced Science, 2021, 8, e2004036.	11.2	56
11	Core–shell TiO ₂ @C ultralong nanotubes with enhanced adsorption of antibiotics. Journal of Materials Chemistry A, 2019, 7, 19081-19086.	10.3	53
12	Combined Effect of Temperature Induced Strain and Oxygen Vacancy on Metalâ€insulator Transition of VO ₂ Colloidal Particles. Advanced Functional Materials, 2020, 30, 2005311.	14.9	42
13	An anti-aging polymer electrolyte for flexible rechargeable zinc-ion batteries. Journal of Materials Chemistry A, 2020, 8, 22637-22644.	10.3	41
14	High Defect Nanoscale ZnO Films with Polar Facets for Enhanced Photocatalytic Performance. ACS Applied Nano Materials, 2019, 2, 2881-2889.	5.0	29
15	Zn and N Codoped TiO ₂ Thin Films: Photocatalytic and Bactericidal Activity. ACS Applied Materials & Interfaces, 2021, 13, 10480-10489.	8.0	28
16	Controlling the Thermoelectric Properties of Organometallic Coordination Polymers via Ligand Design. Advanced Functional Materials, 2020, 30, 2003106.	14.9	15
17	Zinc″on Batteries: Multiâ€6cale Investigations of δâ€Ni _{0.25} V ₂ O ₅ ·nH ₂ O Cathode Materials in Aqueous Zinc″on Batteries (Adv. Energy Mater. 15/2020). Advanced Energy Materials, 2020, 10, 2070068.	19.5	8
18	Zincâ€lon Batteries: Insights on Flexible Zincâ€lon Batteries from Lab Research to Commercialization (Adv.) Tj E	TQq0,00 r	gBŢ /Overlocl

#	Article	IF	CITATIONS
19	The Effect of Semiconductor Morphology on the Spatial Resolution of ZnO Based Light-Addressable Potentiometric Sensors. Proceedings (mdpi), 2018, 2, 917.	0.2	1