
Resham Bhattacharya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8389032/publications.pdf Version: 2024-02-01

Ρεςμαμ Βματταςμαργα

#	Article	IF	CITATIONS
1	Revealing macropinocytosis using nanoparticles. Molecular Aspects of Medicine, 2022, 83, 100993.	6.4	25
2	Targeting BMI1 mitigates chemoresistance in ovarian cancer. Genes and Diseases, 2022, 9, 1415-1418.	3.4	0
3	Reality CHEK: Understanding the biology and clinical potential of CHK1. Cancer Letters, 2021, 497, 202-211.	7.2	58
4	Gold nanoparticles inhibit activation of cancer-associated fibroblasts by disrupting communication from tumor and microenvironmental cells. Bioactive Materials, 2021, 6, 326-332.	15.6	31
5	Strategies for Delivering Nanoparticles across Tumor Blood Vessels. Advanced Functional Materials, 2021, 31, 2007363.	14.9	46
6	Hybrid Nanosystems for Biomedical Applications. ACS Nano, 2021, 15, 2099-2142.	14.6	100
7	Experimental conditions influence the formation and composition of the corona around gold nanoparticles. Cancer Nanotechnology, 2021, 12, 1.	3.7	32
8	Small Non-Coding-RNA in Gynecological Malignancies. Cancers, 2021, 13, 1085.	3.7	20
9	Guidelines for the use and interpretation of assays for monitoring autophagy (4th) Tj ETQq1 1 0.784314 rgBT /C)verlock 10	0 Tf 50 422 To 1,430
10	Evaluation of I-TAC as a potential early plasma marker to differentiate between critical and non-critical COVID-19. Cell Stress, 2021, 6, 6-16.	3.2	3
11	Patient-Derived Xenografts of High-Grade Serous Ovarian Cancer Subtype as a Powerful Tool in Pre-Clinical Research. Cancers, 2021, 13, 6288.	3.7	15
12	KRCC1: A potential therapeutic target in ovarian cancer. FASEB Journal, 2020, 34, 2287-2300.	0.5	5
13	When the chains do not break: the role of USP10 in physiology and pathology. Cell Death and Disease, 2020, 11, 1033.	6.3	35
14	Switching the intracellular pathway and enhancing the therapeutic efficacy of small interfering RNA by auroliposome. Science Advances, 2020, 6, eaba5379.	10.3	35
15	Cystathionine beta synthase regulates mitochondrial dynamics and function in endothelial cells. FASEB Journal, 2020, 34, 9372-9392.	0.5	23
16	Cystathione \hat{l}^2 -synthase regulates HIF-1 \hat{l} ± stability through persulfidation of PHD2. Science Advances, 2020, 6, .	10.3	24
17	<p>Targeting Pancreatic Cancer Cells and Stellate Cells Using Designer Nanotherapeutics in vitro</p> . International Journal of Nanomedicine, 2020, Volume 15, 991-1003.	6.7	18
18	Micro <scp>RNA</scp> â€195 controls <scp>MICU</scp> 1 expression and tumor growth in ovarian cancer. EMBO Reports, 2020, 21, e48483.	4.5	29

RESHAM BHATTACHARYA

#	Article	IF	CITATIONS
19	Targeting the TGFÎ ² pathway in uterine carcinosarcoma. Cell Stress, 2020, 4, 252-260.	3.2	7
20	Nanoparticle Interactions with the Tumor Microenvironment. Bioconjugate Chemistry, 2019, 30, 2247-2263.	3.6	66
21	Gold Nanoparticles sensitize pancreatic cancer cells to gemcitabine. Cell Stress, 2019, 3, 267-279.	3.2	45
22	Hydrogen sulfide signaling in mitochondria and disease. FASEB Journal, 2019, 33, 13098-13125.	0.5	162
23	Protein kinase D up-regulates transcription of VECF receptor-2 in endothelial cells by suppressing nuclear localization of the transcription factor AP2β. Journal of Biological Chemistry, 2019, 294, 15759-15767.	3.4	12
24	Gold Nanoparticle Transforms Activated Cancer-Associated Fibroblasts to Quiescence. ACS Applied Materials & Interfaces, 2019, 11, 26060-26068.	8.0	40
25	Gold Nanoparticles Disrupt Tumor Microenvironment - Endothelial Cell Cross Talk To Inhibit Angiogenic Phenotypes <i>in Vitro</i> . Bioconjugate Chemistry, 2019, 30, 1724-1733.	3.6	38
26	Multifunctional APJ Pathway Promotes Ovarian Cancer Progression and Metastasis. Molecular Cancer Research, 2019, 17, 1378-1390.	3.4	19
27	Evaluating the Mechanism and Therapeutic Potential of PTC-028, a Novel Inhibitor of BMI-1 Function in Ovarian Cancer. Molecular Cancer Therapeutics, 2018, 17, 39-49.	4.1	40
28	Cystathionine βâ€synthase regulates mitochondrial morphogenesis in ovarian cancer. FASEB Journal, 2018, 32, 4145-4157.	0.5	33
29	Inhibition of BMI1, a Therapeutic Approach in Endometrial Cancer. Molecular Cancer Therapeutics, 2018, 17, 2136-2143.	4.1	15
30	Cystathionine β-Synthase Is Necessary for Axis Development in Vivo. Frontiers in Cell and Developmental Biology, 2018, 6, 14.	3.7	14
31	MICU1 drives glycolysis and chemoresistance in ovarian cancer. Nature Communications, 2017, 8, 14634.	12.8	118
32	BMI1, a new target of CK2α. Molecular Cancer, 2017, 16, 56.	19.2	18
33	Inhibition of BMI1 induces autophagy-mediated necroptosis. Autophagy, 2016, 12, 659-670.	9.1	61
34	Mitochondrial BMI1 maintains bioenergetic homeostasis in cells. FASEB Journal, 2016, 30, 4042-4055.	0.5	18
35	Gold Nanoparticle Reprograms Pancreatic Tumor Microenvironment and Inhibits Tumor Growth. ACS Nano, 2016, 10, 10636-10651.	14.6	134
36	MDR1 mediated chemoresistance: BMI1 and TIP60 in action. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2016, 1859, 983-993.	1.9	25

RESHAM BHATTACHARYA

#	Article	IF	CITATIONS
37	Cystathionine βâ€synthase regulates endothelial function via protein <i>S</i> â€sulfhydration. FASEB Journal, 2016, 30, 441-456.	0.5	102
38	Therapeutic evaluation of microRNA-15a and microRNA-16 in ovarian cancer. Oncotarget, 2016, 7, 15093-15104.	1.8	61
39	Bmi-1: At the crossroads of physiological and pathological biology. Genes and Diseases, 2015, 2, 225-239.	3.4	97
40	RhoC maintains vascular homeostasis by regulating VEGF-induced signaling in endothelial cells. Journal of Cell Science, 2015, 128, 3556-68.	2.0	35
41	Role of TGF-Î ² signaling in uterine carcinosarcoma. Oncotarget, 2015, 6, 14646-14655.	1.8	20
42	Role of cystathionine beta synthase in lipid metabolism in ovarian cancer. Oncotarget, 2015, 6, 37367-37384.	1.8	31
43	Understanding Protein–Nanoparticle Interaction: A New Gateway to Disease Therapeutics. Bioconjugate Chemistry, 2014, 25, 1078-1090.	3.6	76
44	Sensitization of ovarian cancer cells to cisplatin by gold nanoparticles. Oncotarget, 2014, 5, 6453-6465.	1.8	62
45	Plumbagin inhibits tumorigenesis and angiogenesis of ovarian cancer cells <i>in vivo</i> . International Journal of Cancer, 2013, 132, 1201-1212.	5.1	92
46	Probing Novel Roles of the Mitochondrial Uniporter in Ovarian Cancer Cells Using Nanoparticles. Journal of Biological Chemistry, 2013, 288, 17610-17618.	3.4	37
47	Inhibition of tumor growth and metastasis by a self-therapeutic nanoparticle. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 6700-6705.	7.1	208
48	Inhibiting the Growth of Pancreatic Adenocarcinoma In Vitro and In Vivo through Targeted Treatment with Designer Gold Nanotherapeutics. PLoS ONE, 2013, 8, e57522.	2.5	27
49	Cystathionine Beta-Synthase (CBS) Contributes to Advanced Ovarian Cancer Progression and Drug Resistance. PLoS ONE, 2013, 8, e79167.	2.5	205
50	NHERF-2 maintains endothelial homeostasis. Blood, 2012, 119, 4798-4806.	1.4	20
51	Identifying New Therapeutic Targets via Modulation of Protein Corona Formation by Engineered Nanoparticles. PLoS ONE, 2012, 7, e33650.	2.5	85
52	Intrinsic therapeutic applications of noble metal nanoparticles: past, present and future. Chemical Society Reviews, 2012, 41, 2943.	38.1	725
53	Back Cover: Switching the Targeting Pathways of a Therapeutic Antibody by Nanodesign (Angew. Chem.) Tj ETC	2q110.78 13.8	4314 rgBT /
54	Enhancing Chemotherapy Response with Bmi-1 Silencing in Ovarian Cancer. PLoS ONE, 2011, 6, e17918.	2.5	74

#	Article	IF	CITATIONS
55	Designing Nanoconjugates to Effectively Target Pancreatic Cancer Cells In Vitro and In Vivo. PLoS ONE, 2011, 6, e20347.	2.5	60
56	Regulation of vascular endothelial growth factor receptor 2 trafficking and angiogenesis by Golgi localized t-SNARE syntaxin 6. Blood, 2011, 117, 1425-1435.	1.4	84
57	Mechanism of anti-angiogenic property of gold nanoparticles: role of nanoparticle size and surface charge. Nanomedicine: Nanotechnology, Biology, and Medicine, 2011, 7, 580-587.	3.3	196
58	Inorganic Nanoparticles in Cancer Therapy. Pharmaceutical Research, 2011, 28, 237-259.	3.5	323
59	Efficient Delivery of Gold Nanoparticles by Dual Receptor Targeting. Advanced Materials, 2011, 23, 5034-5038.	21.0	48
60	Synthesis of Silver Nanocubes by Photoreduction of Silver Salts in the Presence of Proteins. International Journal of Green Nanotechnology, 2011, 3, 134-139.	0.3	2
61	Modulating Pharmacokinetics, Tumor Uptake and Biodistribution by Engineered Nanoparticles. PLoS ONE, 2011, 6, e24374.	2.5	315
62	Endothelial cell–specific chemotaxis receptor (ecscr) promotes angioblast migration during vasculogenesis and enhances VEGF receptor sensitivity. Blood, 2010, 115, 4614-4622.	1.4	37
63	Fabrication of gold nanoparticles for targeted therapy in pancreatic cancer. Advanced Drug Delivery Reviews, 2010, 62, 346-361.	13.7	376
64	A core-shell nanomaterial with endogenous therapeutic and diagnostic functions. Cancer Nanotechnology, 2010, 1, 13-18.	3.7	10
65	Nanoconjugation modulates the trafficking and mechanism of antibody induced receptor endocytosis. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 14541-14546.	7.1	126
66	Effect of Nanoparticle Surface Charge at the Plasma Membrane and Beyond. Nano Letters, 2010, 10, 2543-2548.	9.1	537
67	Sclerostin binds and regulates the activity of cysteine-rich protein 61. Biochemical and Biophysical Research Communications, 2010, 392, 36-40.	2.1	25
68	Gold nanoparticles: opportunities and challenges in nanomedicine. Expert Opinion on Drug Delivery, 2010, 7, 753-763.	5.0	437
69	Fabrication and functional characterization of goldnanoconjugates for potential application in ovarian cancer. Journal of Materials Chemistry, 2010, 20, 547-554.	6.7	85
70	MiR-15a and MiR-16 Control Bmi-1 Expression in Ovarian Cancer. Cancer Research, 2009, 69, 9090-9095.	0.9	229
71	Distinct role of PLCβ3 in VEGF-mediated directional migration and vascular sprouting. Journal of Cell Science, 2009, 122, 1025-1034.	2.0	54
72	Dopamine regulates phosphorylation of VEGF receptor 2 by engaging Src-homology-2-domain-containing protein tyrosine phosphatase 2. Journal of Cell Science, 2009, 122, 3385-3392.	2.0	48

#	Article	IF	CITATIONS
73	The neurotransmitter dopamine modulates vascular permeability in the endothelium. Journal of Molecular Signaling, 2008, 3, 14.	0.5	34
74	Src homology 2 (SH2) domain containing protein tyrosine phosphatase-1 (SHP-1) dephosphorylates VEGF Receptor-2 and attenuates endothelial DNA synthesis, but not migration. Journal of Molecular Signaling, 2008, 3, 8.	0.5	43
75	Biological properties of "naked―metal nanoparticlesâ~†. Advanced Drug Delivery Reviews, 2008, 60, 1289-1306.	13.7	771
76	Targeted Delivery of Gemcitabine to Pancreatic Adenocarcinoma Using Cetuximab as a Targeting Agent. Cancer Research, 2008, 68, 1970-1978.	0.9	332
77	Role of Hedgehog Signaling in Ovarian Cancer. Clinical Cancer Research, 2008, 14, 7659-7666.	7.0	113
78	Application of Gold Nanoparticles for Targeted Therapy in Cancer. Journal of Biomedical Nanotechnology, 2008, 4, 99-132.	1.1	68
79	Lanthanide Phosphate Nanorods as Inorganic Fluorescent Labels in Cell Biology Research. Clinical Chemistry, 2007, 53, 2029-2031.	3.2	41
80	Attaching folic acid on gold nanoparticles using noncovalent interaction via different polyethylene glycol backbones and targeting of cancer cells. Nanomedicine: Nanotechnology, Biology, and Medicine, 2007, 3, 224-238.	3.3	166
81	Potential therapeutic application of gold nanoparticles in B-chronic lymphocytic leukemia (BCLL): enhancing apoptosis. Journal of Nanobiotechnology, 2007, 5, 4.	9.1	175
82	Inorganic phosphate nanorods are a novel fluorescent label in cell biology. Journal of Nanobiotechnology, 2006, 4, 11.	9.1	53
83	Expression and Regulatory Role of GAIP-Interacting Protein GIPC in Pancreatic Adenocarcinoma. Cancer Research, 2006, 66, 10264-10268.	0.9	39
84	Gold Nanoparticles Bearing Functional Anti-Cancer Drug and Anti-Angiogenic Agent: A "2 in 1" System with Potential Application in Cancer Therapeutics. Journal of Biomedical Nanotechnology, 2005, 1, 224-228.	1.1	39
85	Antiangiogenic Properties of Gold Nanoparticles. Clinical Cancer Research, 2005, 11, 3530-3534.	7.0	426
86	Inhibition of Vascular Permeability Factor/Vascular Endothelial Growth Factor-mediated Angiogenesis by the Kruppel-like Factor KLF2*. Journal of Biological Chemistry, 2005, 280, 28848-28851.	3.4	147
87	Regulatory role of dynaminâ€2 in VEGFRâ€2/KDRâ€mediated endothelial signaling. FASEB Journal, 2005, 19, 1692-1694.	0.5	75
88	Protein Kinase C ζ Transactivates Hypoxia-Inducible Factor α by Promoting Its Association with p300 in Renal Cancer. Cancer Research, 2004, 64, 456-462.	0.9	60
89	Complexity in the vascular permeability factor/vascular endothelial growth factor (VPF/VEGF)-receptors signaling. Molecular and Cellular Biochemistry, 2004, 264, 51-61.	3.1	27
90	Survival and SOS induction in cisplatin-treated Escherichia coli deficient in Pol II, RecBCD and RecFOR functions. DNA Repair, 2002, 1, 955-966.	2.8	14