Resham Bhattacharya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8389032/publications.pdf

Version: 2024-02-01

90 papers

10,371 citations

57758 44 h-index 90 g-index

95 all docs 95 docs citations

95 times ranked 16401 citing authors

#	Article	IF	Citations
1	Guidelines for the use and interpretation of assays for monitoring autophagy (4th) Tj ETQq1 1 0.784314 rgBT /	Overlock	10 Tf 50 742 To
2	Biological properties of "naked―metal nanoparticlesâ~†. Advanced Drug Delivery Reviews, 2008, 60, 1289-1306.	13.7	771
3	Intrinsic therapeutic applications of noble metal nanoparticles: past, present and future. Chemical Society Reviews, 2012, 41, 2943.	38.1	725
4	Effect of Nanoparticle Surface Charge at the Plasma Membrane and Beyond. Nano Letters, 2010, 10, 2543-2548.	9.1	537
5	Gold nanoparticles: opportunities and challenges in nanomedicine. Expert Opinion on Drug Delivery, 2010, 7, 753-763.	5.0	437
6	Antiangiogenic Properties of Gold Nanoparticles. Clinical Cancer Research, 2005, 11, 3530-3534.	7.0	426
7	Fabrication of gold nanoparticles for targeted therapy in pancreatic cancer. Advanced Drug Delivery Reviews, 2010, 62, 346-361.	13.7	376
8	Targeted Delivery of Gemcitabine to Pancreatic Adenocarcinoma Using Cetuximab as a Targeting Agent. Cancer Research, 2008, 68, 1970-1978.	0.9	332
9	Inorganic Nanoparticles in Cancer Therapy. Pharmaceutical Research, 2011, 28, 237-259.	3.5	323
10	Modulating Pharmacokinetics, Tumor Uptake and Biodistribution by Engineered Nanoparticles. PLoS ONE, 2011, 6, e24374.	2.5	315
11	MiR-15a and MiR-16 Control Bmi-1 Expression in Ovarian Cancer. Cancer Research, 2009, 69, 9090-9095.	0.9	229
12	Inhibition of tumor growth and metastasis by a self-therapeutic nanoparticle. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 6700-6705.	7.1	208
13	Cystathionine Beta-Synthase (CBS) Contributes to Advanced Ovarian Cancer Progression and Drug Resistance. PLoS ONE, 2013, 8, e79167.	2.5	205
14	Mechanism of anti-angiogenic property of gold nanoparticles: role of nanoparticle size and surface charge. Nanomedicine: Nanotechnology, Biology, and Medicine, 2011, 7, 580-587.	3.3	196
15	Potential therapeutic application of gold nanoparticles in B-chronic lymphocytic leukemia (BCLL): enhancing apoptosis. Journal of Nanobiotechnology, 2007, 5, 4.	9.1	175
16	Attaching folic acid on gold nanoparticles using noncovalent interaction via different polyethylene glycol backbones and targeting of cancer cells. Nanomedicine: Nanotechnology, Biology, and Medicine, 2007, 3, 224-238.	3.3	166
17	Hydrogen sulfide signaling in mitochondria and disease. FASEB Journal, 2019, 33, 13098-13125.	0.5	162
18	Inhibition of Vascular Permeability Factor/Vascular Endothelial Growth Factor-mediated Angiogenesis by the Kruppel-like Factor KLF2*. Journal of Biological Chemistry, 2005, 280, 28848-28851.	3.4	147

#	Article	IF	CITATIONS
19	Gold Nanoparticle Reprograms Pancreatic Tumor Microenvironment and Inhibits Tumor Growth. ACS Nano, 2016, 10, 10636-10651.	14.6	134
20	Nanoconjugation modulates the trafficking and mechanism of antibody induced receptor endocytosis. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 14541-14546.	7.1	126
21	MICU1 drives glycolysis and chemoresistance in ovarian cancer. Nature Communications, 2017, 8, 14634.	12.8	118
22	Role of Hedgehog Signaling in Ovarian Cancer. Clinical Cancer Research, 2008, 14, 7659-7666.	7.0	113
23	Cystathionine βâ€synthase regulates endothelial function via protein <i>S</i> â€sulfhydration. FASEB Journal, 2016, 30, 441-456.	0.5	102
24	Hybrid Nanosystems for Biomedical Applications. ACS Nano, 2021, 15, 2099-2142.	14.6	100
25	Bmi-1: At the crossroads of physiological and pathological biology. Genes and Diseases, 2015, 2, 225-239.	3.4	97
26	Plumbagin inhibits tumorigenesis and angiogenesis of ovarian cancer cells <i>in vivo</i> . International Journal of Cancer, 2013, 132, 1201-1212.	5.1	92
27	Fabrication and functional characterization of goldnanoconjugates for potential application in ovarian cancer. Journal of Materials Chemistry, 2010, 20, 547-554.	6.7	85
28	Identifying New Therapeutic Targets via Modulation of Protein Corona Formation by Engineered Nanoparticles. PLoS ONE, 2012, 7, e33650.	2.5	85
29	Regulation of vascular endothelial growth factor receptor 2 trafficking and angiogenesis by Golgi localized t-SNARE syntaxin 6. Blood, 2011, 117, 1425-1435.	1.4	84
30	Understanding Protein–Nanoparticle Interaction: A New Gateway to Disease Therapeutics. Bioconjugate Chemistry, 2014, 25, 1078-1090.	3 . 6	76
31	Regulatory role of dynaminâ€2 in VEGFRâ€2/KDRâ€mediated endothelial signaling. FASEB Journal, 2005, 19, 1692-1694.	0.5	75
32	Enhancing Chemotherapy Response with Bmi-1 Silencing in Ovarian Cancer. PLoS ONE, 2011, 6, e17918.	2.5	74
33	Application of Gold Nanoparticles for Targeted Therapy in Cancer. Journal of Biomedical Nanotechnology, 2008, 4, 99-132.	1.1	68
34	Nanoparticle Interactions with the Tumor Microenvironment. Bioconjugate Chemistry, 2019, 30, 2247-2263.	3.6	66
35	Sensitization of ovarian cancer cells to cisplatin by gold nanoparticles. Oncotarget, 2014, 5, 6453-6465.	1.8	62
36	Inhibition of BMI1 induces autophagy-mediated necroptosis. Autophagy, 2016, 12, 659-670.	9.1	61

#	Article	IF	CITATIONS
37	Therapeutic evaluation of microRNA-15a and microRNA-16 in ovarian cancer. Oncotarget, 2016, 7, 15093-15104.	1.8	61
38	Protein Kinase C \hat{I}_{\P} Transactivates Hypoxia-Inducible Factor \hat{I}_{\pm} by Promoting Its Association with p300 in Renal Cancer. Cancer Research, 2004, 64, 456-462.	0.9	60
39	Designing Nanoconjugates to Effectively Target Pancreatic Cancer Cells In Vitro and In Vivo. PLoS ONE, 2011, 6, e20347.	2.5	60
40	Reality CHEK: Understanding the biology and clinical potential of CHK1. Cancer Letters, 2021, 497, 202-211.	7.2	58
41	Distinct role of PLCÎ ² 3 in VEGF-mediated directional migration and vascular sprouting. Journal of Cell Science, 2009, 122, 1025-1034.	2.0	54
42	Inorganic phosphate nanorods are a novel fluorescent label in cell biology. Journal of Nanobiotechnology, 2006, 4, 11.	9.1	53
43	Dopamine regulates phosphorylation of VEGF receptor 2 by engaging Src-homology-2-domain-containing protein tyrosine phosphatase 2. Journal of Cell Science, 2009, 122, 3385-3392.	2.0	48
44	Efficient Delivery of Gold Nanoparticles by Dual Receptor Targeting. Advanced Materials, 2011, 23, 5034-5038.	21.0	48
45	Strategies for Delivering Nanoparticles across Tumor Blood Vessels. Advanced Functional Materials, 2021, 31, 2007363.	14.9	46
46	Gold Nanoparticles sensitize pancreatic cancer cells to gemcitabine. Cell Stress, 2019, 3, 267-279.	3.2	45
47	Src homology 2 (SH2) domain containing protein tyrosine phosphatase-1 (SHP-1) dephosphorylates VEGF Receptor-2 and attenuates endothelial DNA synthesis, but not migration. Journal of Molecular Signaling, 2008, 3, 8.	0.5	43
48	Lanthanide Phosphate Nanorods as Inorganic Fluorescent Labels in Cell Biology Research. Clinical Chemistry, 2007, 53, 2029-2031.	3.2	41
49	Evaluating the Mechanism and Therapeutic Potential of PTC-028, a Novel Inhibitor of BMI-1 Function in Ovarian Cancer. Molecular Cancer Therapeutics, 2018, 17, 39-49.	4.1	40
50	Gold Nanoparticle Transforms Activated Cancer-Associated Fibroblasts to Quiescence. ACS Applied Materials & Samp; Interfaces, 2019, 11, 26060-26068.	8.0	40
51	Gold Nanoparticles Bearing Functional Anti-Cancer Drug and Anti-Angiogenic Agent: A "2 in 1" System with Potential Application in Cancer Therapeutics. Journal of Biomedical Nanotechnology, 2005, 1, $224-228$.	1.1	39
52	Expression and Regulatory Role of GAIP-Interacting Protein GIPC in Pancreatic Adenocarcinoma. Cancer Research, 2006, 66, 10264-10268.	0.9	39
53	Gold Nanoparticles Disrupt Tumor Microenvironment - Endothelial Cell Cross Talk To Inhibit Angiogenic Phenotypes <i>in Vitro</i> Bioconjugate Chemistry, 2019, 30, 1724-1733.	3.6	38
54	Endothelial cell–specific chemotaxis receptor (ecscr) promotes angioblast migration during vasculogenesis and enhances VEGF receptor sensitivity. Blood, 2010, 115, 4614-4622.	1.4	37

#	Article	IF	CITATIONS
55	Probing Novel Roles of the Mitochondrial Uniporter in Ovarian Cancer Cells Using Nanoparticles. Journal of Biological Chemistry, 2013, 288, 17610-17618.	3.4	37
56	RhoC maintains vascular homeostasis by regulating VEGF-induced signaling in endothelial cells. Journal of Cell Science, 2015, 128, 3556-68.	2.0	35
57	When the chains do not break: the role of USP10 in physiology and pathology. Cell Death and Disease, 2020, 11, 1033.	6.3	35
58	Switching the intracellular pathway and enhancing the therapeutic efficacy of small interfering RNA by auroliposome. Science Advances, 2020, 6, eaba5379.	10.3	35
59	The neurotransmitter dopamine modulates vascular permeability in the endothelium. Journal of Molecular Signaling, 2008, 3, 14.	0.5	34
60	Cystathionine βâ€synthase regulates mitochondrial morphogenesis in ovarian cancer. FASEB Journal, 2018, 32, 4145-4157.	0.5	33
61	Experimental conditions influence the formation and composition of the corona around gold nanoparticles. Cancer Nanotechnology, 2021, $12, 1$.	3.7	32
62	Gold nanoparticles inhibit activation of cancer-associated fibroblasts by disrupting communication from tumor and microenvironmental cells. Bioactive Materials, 2021, 6, 326-332.	15.6	31
63	Role of cystathionine beta synthase in lipid metabolism in ovarian cancer. Oncotarget, 2015, 6, 37367-37384.	1.8	31
64	Micro <scp>RNA</scp> â€195 controls <scp>MICU</scp> 1 expression and tumor growth in ovarian cancer. EMBO Reports, 2020, 21, e48483.	4.5	29
65	Complexity in the vascular permeability factor/vascular endothelial growth factor (VPF/VEGF)-receptors signaling. Molecular and Cellular Biochemistry, 2004, 264, 51-61.	3.1	27
66	Inhibiting the Growth of Pancreatic Adenocarcinoma In Vitro and In Vivo through Targeted Treatment with Designer Gold Nanotherapeutics. PLoS ONE, 2013, 8, e57522.	2.5	27
67	Sclerostin binds and regulates the activity of cysteine-rich protein 61. Biochemical and Biophysical Research Communications, 2010, 392, 36-40.	2.1	25
68	MDR1 mediated chemoresistance: BMI1 and TIP60 in action. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2016, 1859, 983-993.	1.9	25
69	Revealing macropinocytosis using nanoparticles. Molecular Aspects of Medicine, 2022, 83, 100993.	6.4	25
70	Cystathione \hat{l}^2 -synthase regulates HIF- $1\hat{l}\pm$ stability through persulfidation of PHD2. Science Advances, 2020, 6, .	10.3	24
71	Cystathionine beta synthase regulates mitochondrial dynamics and function in endothelial cells. FASEB Journal, 2020, 34, 9372-9392.	0.5	23
72	NHERF-2 maintains endothelial homeostasis. Blood, 2012, 119, 4798-4806.	1.4	20

#	Article	IF	Citations
7 3	Small Non-Coding-RNA in Gynecological Malignancies. Cancers, 2021, 13, 1085.	3.7	20
74	Role of TGF-Î ² signaling in uterine carcinosarcoma. Oncotarget, 2015, 6, 14646-14655.	1.8	20
7 5	Multifunctional APJ Pathway Promotes Ovarian Cancer Progression and Metastasis. Molecular Cancer Research, 2019, 17, 1378-1390.	3.4	19
76	Mitochondrial BMI1 maintains bioenergetic homeostasis in cells. FASEB Journal, 2016, 30, 4042-4055.	0.5	18
77	BMI1, a new target of CK2α. Molecular Cancer, 2017, 16, 56.	19.2	18
78	<p>Targeting Pancreatic Cancer Cells and Stellate Cells Using Designer Nanotherapeutics in vitro</p> . International Journal of Nanomedicine, 2020, Volume 15, 991-1003.	6.7	18
79	Inhibition of BMI1, a Therapeutic Approach in Endometrial Cancer. Molecular Cancer Therapeutics, 2018, 17, 2136-2143.	4.1	15
80	Patient-Derived Xenografts of High-Grade Serous Ovarian Cancer Subtype as a Powerful Tool in Pre-Clinical Research. Cancers, 2021, 13, 6288.	3.7	15
81	Survival and SOS induction in cisplatin-treated Escherichia coli deficient in Pol II, RecBCD and RecFOR functions. DNA Repair, 2002, 1, 955-966.	2.8	14
82	Cystathionine \hat{l}^2 -Synthase Is Necessary for Axis Development in Vivo. Frontiers in Cell and Developmental Biology, 2018, 6, 14.	3.7	14
83	Protein kinase D up-regulates transcription of VEGF receptor-2 in endothelial cells by suppressing nuclear localization of the transcription factor AP2β. Journal of Biological Chemistry, 2019, 294, 15759-15767.	3.4	12
84	A core-shell nanomaterial with endogenous therapeutic and diagnostic functions. Cancer Nanotechnology, 2010, 1, 13-18.	3.7	10
85	Targeting the TGFÎ ² pathway in uterine carcinosarcoma. Cell Stress, 2020, 4, 252-260.	3.2	7
86	KRCC1: A potential therapeutic target in ovarian cancer. FASEB Journal, 2020, 34, 2287-2300.	0.5	5
87	Evaluation of I-TAC as a potential early plasma marker to differentiate between critical and non-critical COVID-19. Cell Stress, 2021, 6, 6-16.	3.2	3
88	Synthesis of Silver Nanocubes by Photoreduction of Silver Salts in the Presence of Proteins. International Journal of Green Nanotechnology, 2011, 3, 134-139.	0.3	2
89	Back Cover: Switching the Targeting Pathways of a Therapeutic Antibody by Nanodesign (Angew. Chem.) Tj ETQq1	. 1 0.7843 13 . 8	14 rgBT /
90	Targeting BMI1 mitigates chemoresistance in ovarian cancer. Genes and Diseases, 2022, 9, 1415-1418.	3.4	0