
Alejandro Pineiro Ugalde

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8388596/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	A comprehensive enhancer screen identifies TRAM2 as a key and novel mediator of YAP oncogenesis. Genome Biology, 2021, 22, 54.	8.8	16
2	<scp>SLC</scp> 1A3 contributes to Lâ€asparaginase resistance in solid tumors. EMBO Journal, 2019, 38, e102147.	7.8	41
3	SCAF4 and SCAF8, mRNA Anti-Terminator Proteins. Cell, 2019, 177, 1797-1813.e18.	28.9	85
4	LncRNA-OIS1 regulates DPP4 activation to modulate senescence induced by RAS. Nucleic Acids Research, 2018, 46, 4213-4227.	14.5	40
5	Nuclear poly(A)-binding protein 1 is an ATM target and essential for DNA double-strand break repair. Nucleic Acids Research, 2018, 46, 730-747.	14.5	15
6	The microRNA-29/PGC1α regulatory axis is critical for metabolic control of cardiac function. PLoS Biology, 2018, 16, e2006247.	5.6	42
7	Functional CRISPR screen identifies AP1-associated enhancer regulating FOXF1 to modulate oncogene-induced senescence. Genome Biology, 2018, 19, 118.	8.8	38
8	<scp>TGF</scp> β1â€induced leucine limitation uncovered by differential ribosome codon reading. EMBO Reports, 2017, 18, 549-557.	4.5	8
9	Tumour-specific proline vulnerability uncovered by differential ribosome codon reading. Nature, 2016, 530, 490-494.	27.8	202
10	Functional genetic screens for enhancer elements in the human genome using CRISPR-Cas9. Nature Biotechnology, 2016, 34, 192-198.	17.5	352
11	Genome-Wide Polyadenylation Maps Reveal Dynamic mRNA 3′-End Formation in the Failing Human Heart. Circulation Research, 2016, 118, 433-438.	4.5	41
12	3'UTR Shortening Potentiates MicroRNA-Based Repression of Pro-differentiation Genes in Proliferating Human Cells. PLoS Genetics, 2016, 12, e1005879.	3.5	77
13	The <i>miR-424(322)/503</i> cluster orchestrates remodeling of the epithelium in the involuting mammary gland. Genes and Development, 2014, 28, 765-782.	5.9	66
14	Prelamin A causes progeria through cell-extrinsic mechanisms and prevents cancer invasion. Nature Communications, 2013, 4, 2268.	12.8	63
15	Alternative cleavage and polyadenylation: extent, regulation and function. Nature Reviews Genetics, 2013, 14, 496-506.	16.3	712
16	Aminopeptidase O. , 2013, , 438-442.		0
17	Cell autonomous and systemic factors in progeria development. Biochemical Society Transactions, 2011, 39, 1710-1714.	3.4	20
18	Aging and chronic DNA damage response activate a regulatory pathway involving miR-29 and p53. EMBO Journal, 2011, 30, 2219-2232.	7.8	216

#	Article	IF	CITATIONS
19	Micromanaging aging with miRNAs. Nucleus, 2011, 2, 549-555.	2.2	35
20	Rejuvenating somatotropic signaling: a therapeutical opportunity for premature aging?. Aging, 2010, 2, 1017-1022.	3.1	13
21	Insulin-like growth factor 1 treatment extends longevity in a mouse model of human premature aging by restoring somatotroph axis function. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 16268-16273.	7.1	124
22	Metalloproteases and the Degradome. Methods in Molecular Biology, 2010, 622, 3-29.	0.9	37
23	Combined treatment with statins and aminobisphosphonates extends longevity in a mouse model of human premature aging. Nature Medicine, 2008, 14, 767-772.	30.7	355
24	Nuclear envelope defects cause stem cell dysfunction in premature-aging mice. Journal of Cell Biology, 2008, 181, 27-35.	5.2	160
25	Premature aging in mice activates a systemic metabolic response involving autophagy induction. Human Molecular Genetics, 2008, 17, 2196-2211.	2.9	141
26	Nuclear envelope defects cause stem cell dysfunction in premature-aging mice. Journal of Experimental Medicine, 2008, 205, i10-i10.	8.5	0
27	Identification and Characterization of Human Archaemetzincin-1 and -2, Two Novel Members of a Family of Metalloproteases Widely Distributed in Archaea. Journal of Biological Chemistry, 2005, 280, 30367-30375.	3.4	25
28	Identification of Human Aminopeptidase O, a Novel Metalloprotease with Structural Similarity to Aminopeptidase B and Leukotriene A4 Hydrolase. Journal of Biological Chemistry, 2005, 280, 14310-14317.	3.4	36