Filip Vandenbussche

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8388001/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Brassinosteroids Influence Arabidopsis Hypocotyl Graviresponses through Changes in Mannans and Cellulose. Plant and Cell Physiology, 2021, 62, 678-692.	3.1	14
2	Cryptochromes are the dominant photoreceptors mediating heliotropic responses of Arabidopsis inflorescences. Plant, Cell and Environment, 2021, 44, 3246-3256.	5.7	4
3	Ultraviolet Radiation From a Plant Perspective: The Plant-Microorganism Context. Frontiers in Plant Science, 2020, 11, 597642.	3.6	60
4	Editorial: Ultraviolet Radiation: Friend or Foe for Plants?. Frontiers in Plant Science, 2020, 11, 541.	3.6	4
5	Rapid Detection of Hormonal Involvement in Light Responses. Methods in Molecular Biology, 2019, 2026, 201-213.	0.9	0
6	Differential UVR8 Signal across the Stem Controls UV-B–Induced Inflorescence Phototropism. Plant Cell, 2019, 31, 2070-2088.	6.6	35
7	Determination of Phototropism by UV-B Radiation. Methods in Molecular Biology, 2019, 1924, 131-139.	0.9	2
8	UVR8-dependent reporters reveal spatial characteristics of signal spreading in plant tissues. Photochemical and Photobiological Sciences, 2019, 18, 1030-1045.	2.9	11
9	A perspective on ecologically relevant plant-UV research and its practical application. Photochemical and Photobiological Sciences, 2019, 18, 970-988.	2.9	69
10	Silver ions increase plasma membrane permeability through modulation of intracellular calcium levels in tobacco BY-2 cells. Plant Cell Reports, 2018, 37, 809-818.	5.6	11
11	The plant hormone ethylene restricts <i>Arabidopsis</i> growth via the epidermis. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E4130-E4139.	7.1	127
12	An ultraviolet B condition that affects growth and defense in Arabidopsis. Plant Science, 2018, 268, 54-63.	3.6	40
13	Elongator promotes germination and early post-germination growth. Plant Signaling and Behavior, 2018, 13, e1422465.	2.4	6
14	Following the star: Inflorescence heliotropism. Environmental and Experimental Botany, 2018, 147, 75-85.	4.2	8
15	Regulation of seedling growth by ethylene and the ethylene–auxin crosstalk. Planta, 2017, 245, 467-489.	3.2	70
16	Ethylene Controls Adventitious Root Initiation Sites in Arabidopsis Hypocotyls Independently of Strigolactones. Journal of Plant Growth Regulation, 2017, 36, 897-911.	5.1	29
17	Elongator regulates hypocotyl growth in darkness and during photomorphogenesis. Journal of Cell Science, 2017, 131, .	2.0	10
18	ACCERBATIN, a small molecule at the intersection of auxin and reactive oxygen species homeostasis with herbicidal properties. Journal of Experimental Botany, 2017, 68, 4185-4203.	4.8	7

FILIP VANDENBUSSCHE

#	Article	IF	CITATIONS
19	Hormone-controlled UV-B responses in plants. Journal of Experimental Botany, 2016, 67, 4469-4482.	4.8	114
20	REPRESSOR OF ULTRAVIOLET-B PHOTOMORPHOGENESIS function allows efficient phototropin mediated ultraviolet-B phototropism in etiolated seedlings. Plant Science, 2016, 252, 215-221.	3.6	26
21	Ultraviolet-B radiation stimulates downward leaf curling in Arabidopsis thaliana. Plant Physiology and Biochemistry, 2015, 93, 9-17.	5.8	35
22	Differential Accumulation of ELONGATED HYPOCOTYL5 Correlates with Hypocotyl Bending to Ultraviolet-B Light. Plant Physiology, 2014, 166, 40-43.	4.8	15
23	Dynamic infrared imaging analysis of apical hook development in <i>Arabidopsis</i> : the case of brassinosteroids. New Phytologist, 2014, 202, 1398-1411.	7.3	31
24	Photoreceptor-Mediated Bending towards UV-B in Arabidopsis. Molecular Plant, 2014, 7, 1041-1052.	8.3	68
25	TR-DB: An open-access database of compounds affecting the ethylene-induced triple response in Arabidopsis. Plant Physiology and Biochemistry, 2014, 75, 128-137.	5.8	8
26	Brassinosteroid control of shoot gravitropism interacts with ethylene and depends on auxin signaling components. American Journal of Botany, 2013, 100, 215-225.	1.7	56
27	Rosette Tracker: An Open Source Image Analysis Tool for Automatic Quantification of Genotype Effects Â. Plant Physiology, 2012, 160, 1149-1159.	4.8	123
28	Ethylene in vegetative development: a tale with a riddle. New Phytologist, 2012, 194, 895-909.	7.3	124
29	<i>XAP5 CIRCADIAN TIMEKEEPER</i> Regulates Ethylene Responses in Aerial Tissues of Arabidopsis Â. Plant Physiology, 2011, 155, 988-999.	4.8	27
30	The Role of Brassinosteroids in Shoot Gravitropism Â. Plant Physiology, 2011, 156, 1331-1336.	4.8	34
31	Role of PIN-mediated auxin efflux in apical hook development of <i>Arabidopsis thaliana</i> . Development (Cambridge), 2010, 137, 607-617.	2.5	297
32	The auxin influx carriers AUX1 and LAX3 are involved in auxin-ethylene interactions during apical hook development in <i>Arabidopsis thaliana</i> seedlings. Development (Cambridge), 2010, 137, 597-606.	2.5	226
33	Ethylene-induced Arabidopsis hypocotyl elongation is dependent on but not mediated by gibberellins. Journal of Experimental Botany, 2007, 58, 4269-4281.	4.8	64
34	Cryptochrome Blue Light Photoreceptors Are Activated through Interconversion of Flavin Redox States. Journal of Biological Chemistry, 2007, 282, 9383-9391.	3.4	349
35	To grow or not to grow: what can we learn on ethylene-gibberellin cross-talk by in silico gene expression analysis?. Journal of Experimental Botany, 2007, 59, 1-16.	4.8	63
36	HY5 is a point of convergence between cryptochrome and cytokinin signalling pathways in Arabidopsis thaliana. Plant Journal, 2007, 49, 428-441.	5.7	172

FILIP VANDENBUSSCHE

#	Article	IF	CITATIONS
37	Evolutionary conservation of plant gibberellin signalling pathway components. BMC Plant Biology, 2007, 7, 65.	3.6	93
38	One for All and All for One: Cross-Talk of Multiple Signals Controlling the Plant Phenotype. Journal of Plant Growth Regulation, 2007, 26, 178-187.	5.1	30
39	Reaching out of the shade. Current Opinion in Plant Biology, 2005, 8, 462-468.	7.1	222
40	Of light and length: Regulation of hypocotyl growth inArabidopsis. BioEssays, 2005, 27, 275-284.	2.5	139
41	Cell Elongation and Microtubule Behavior in the Arabidopsis Hypocotyl: Responses to Ethylene and Auxin. Journal of Plant Growth Regulation, 2005, 24, 166-178.	5.1	73
42	Auxin, Ethylene and Brassinosteroids: Tripartite Control of Growth in the Arabidopsis Hypocotyl. Plant and Cell Physiology, 2005, 46, 827-836.	3.1	146
43	Circadian Rhythms of Ethylene Emission in Arabidopsis. Plant Physiology, 2004, 136, 3751-3761.	4.8	147
44	Position and cell type-dependent microtubule reorientation characterizes the early response of the Arabidopsis root epidermis to ethylene. Physiologia Plantarum, 2004, 121, 513-519.	5.2	30
45	Shaping the shoot: a circuitry that integrates multiple signals. Trends in Plant Science, 2004, 9, 499-506.	8.8	41
46	The Arabidopsis Mutant alh1 Illustrates a Cross Talk between Ethylene and Auxin. Plant Physiology, 2003, 131, 1228-1238.	4.8	95
47	Ethylene and Auxin Control the Arabidopsis Response to Decreased Light Intensity. Plant Physiology, 2003, 133, 517-527.	4.8	166
48	In the Early Response of Arabidopsis Roots to Ethylene, Cell Elongation Is Up- and Down-Regulated and Uncoupled from Differentiation. Plant Physiology, 2001, 125, 519-522.	4.8	175