Vittorio Raoul Tavolaro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8387006/publications.pdf

Version: 2024-02-01

190 papers

5,690 citations

38 h-index 118850 62

201 all docs

201 docs citations

times ranked

201

7280 citing authors

g-index

#	Article	IF	CITATIONS
1	Event generator tunes obtained from underlying event and multiparton scattering measurements. European Physical Journal C, 2016, 76, 155.	3.9	499
2	Extraction and validation of a new set of CMS pythia8 tunes from underlying-event measurements. European Physical Journal C, 2020, 80, 4.	3.9	198
3	Precision luminosity measurement in proton–proton collisions at \$\$sqrt{s} = 13,hbox {TeV}\$\$ in 2015 and 2016 at CMS. European Physical Journal C, 2021, 81, 800.	3.9	123
4	Charged-particle nuclear modification factors in PbPb and pPb collisions at s N N = $5.02 \$\$$ sqrt $\{s_{mathrm{N};mathrm{N}}\}=5.02 \$\$$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	103
5	Measurements of properties of the Higgs boson decaying into the four-lepton final state in pp collisions at $\$$ sqrt $\{s\}=13$ $\$$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	101
6	Search for new phenomena with the $M_{\text{mathrm }T2}$ \$\$ M T 2 variable in the all-hadronic final state produced in protonâ \'e "proton collisions at \$\$sqrt{s} = 13\$\$ s = 13 \$\$,ext {TeV}\$\$ TeV. European Physical Journal C, 2017, 77, 710.	3.9	98
7	Searches for invisible decays of the Higgs boson in pp collisions at s $\$$ sqrt $\{s\}$ $\$$ = 7, 8, and 13 TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	95
8	Search for a Higgs boson in the mass range from 145 to 1000 GeV decaying to a pair of W or Z bosons. Journal of High Energy Physics, 2015, 2015, 1.	4.7	92
9	Search for high-mass resonances in dilepton final states in proton-proton collisions at \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	86
10	Measurement of the differential cross section and charge asymmetry for inclusive $\mbox{smathrm}$ {p}mathrm {p}ightarrow mathrm {W}^{pm}+X\$\$ p p â†' W ± + X production at \$\${sqrt{s}} = 8\$\$ s = 8 TeV. European Physical Journal C, 2016, 76, 469.	3.9	83
11	Measurement of prompt and nonprompt charmonium suppression in $\$$ ext $\{PbPb\}$ collisions at 5.02 $\$$,ext $\{Te\}$ ext $\{V\}$ \$. European Physical Journal C, 2018, 78, 509.	3.9	83
12	Search for a charged Higgs boson in pp collisions at s = 8 $\$$ sqrt{s}=8 $\$$ TeV. Journal of High Energy Physics, 2015, 2015, 1.	4.7	81
13	Search for production of four top quarks in final states with same-sign or multiple leptons in proton–proton collisions at \$\$sqrt{s}=13\$\$ \$\$,ext {TeV}\$\$. European Physical Journal C, 2020, 80, 75.	3.9	78
14	Measurement of the $\{\{\text{mathrm}\{W\}\}^{+}\}\$ mathrm $\{W\}^{-}\}$ $W+W-$ cross section in pp collisions at $\{s\}=8$ s = 8 TeVand limits on anomalous gauge couplings. European Physical Journal C, 2016, 76, 401.	3.9	74
15	Searches for physics beyond the standard model with the \$\$M_{mathrm {T2}}\$\$ variable in hadronic final states with and without disappearing tracks in proton–proton collisions at \$\$sqrt{s}=13,ext {V} \$\$. European Physical Journal C, 2020, 80, 3.	3.9	70
16	Measurement of the f^- (mathrm f^-) overline (mathrm f^-) f^- production cross section, the top quark mass, and the strong coupling constant using dilepton events in pp collisions at. European Physical Journal C, 2019, 79, 368.	3.9	68
17	Search for new physics in same-sign dilepton events in proton–proton collisions at \$\$sqrt{s} = 13,ext {TeV} \$\$ s = 13 TeV. European Physical Journal C, 2016, 76, 439.	3.9	64
18	Search for electroweak production of charginos and neutralinos in multilepton final states in proton-proton collisions at \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	63

#	Article	IF	CITATIONS
19	Measurement of differential cross sections for Higgs boson production in the diphoton decay channel in pp collisions at $\$$ sqrt $\{s\}=8$,ext $\{TeV\}$ $\$$ s = 8 TeV. European Physical Journal C, 2016, 76, 13.	3.9	62
20	Search for dark matter produced with an energetic jet or a hadronically decaying W or Z boson at s = $13 $ \$\$ sqrt{s}= $13 $ \$\$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	62
21	Measurement of the inelastic proton-proton cross section at $\$$ sqrt $\{s\}=13$ $\$$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	62
22	Search for physics beyond the standard model in events with two leptons of same sign, missing transverse momentum, and jets in proton–proton collisions at \$\$sqrt{s} = 13,ext {TeV} \$\$. European Physical Journal C, 2017, 77, 578.	3.9	57
23	Measurements of Higgs boson properties in the diphoton decay channel in proton-proton collisions at \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	57
24	Measurement of the double-differential inclusive jet cross section in protonâ \in proton collisions at \$\$sqrt{s} = 13,ext {TeV} \$\$ s = 13 TeV. European Physical Journal C, 2016, 76, 451.	3.9	55
25	Measurement and QCD analysis of double-differential inclusive jet cross sections in pp collisions at s = $8 $ \$\$ sqrt{s}= $8 $ \$\$ TeV and cross section ratios to 2.76 and 7 TeV. Journal of High Energy Physics, 2017 , 2017 , 1 .	4.7	54
26	Measurement of prompt and nonprompt $\frac{J}{psi} $ production in $\frac{p}{mathrm \{p\}}$ p p and $\frac{p}{mathrm \{p\}}$ p Pb collisions at $\frac{s}{mathrm \{NN\}}$ =5.02,ext {TeV} \$\$ s. European Physical Journal C, 2017, 77, 269.	3.9	53
27	Measurements of the $\mbox{mathrm } \{p\}$ mathrm $\{p\}$ ightarrow mathrm $\{Z\}$ mathrm $\{Z\}$ p p ât' Z Z production cross section and the $\mbox{mathrm} \{Z\}$ ightarrow 4ell $\mbox{seconstraints}$ on anomalous triple gauge couplings at. European Physical Journal C, 2018, 78, 165.	3.9	52
28	Observation of Y(1S) pair production in proton-proton collisions at $s=8$ \$\$ sqrt{s}=8 \$\$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	48
29	Search for third-generation scalar leptoquarks decaying to a top quark and a $\$$ au $\$$ i, lepton at $\$$ quark $\{$ s $\}$ =13,ext $\{$ Te $\}$ ext $\{$ V $\}$ $\$$ s = 13 Te. European Physical Journal C, 2018, 78, 707.	3.9	46
30	Search for a light charged Higgs boson decaying to c s \hat{A}^- \$\$ mathrm{c}overline{mathrm{s}} \$\$ in pp collisions at s = 8 \$\$ sqrt{s}=8 \$\$ TeV. Journal of High Energy Physics, 2015, 2015, 1-37.	4.7	44
31	Search for standard model production of four top quarks with same-sign and multilepton final states in proton–proton collisions at \$\$sqrt{s} = 13,ext {TeV} \$\$ s = 13 TeV. European Physical Journal C, 2018, 78, 140.	3.9	44
32	Evidence for exclusive $\hat{I}^{3\hat{l}^3}$ \hat{a}^{\dagger} ' $W+W$ \hat{a}^{\bullet} ' production and constraints on anomalous quartic gauge couplings in pp collisions at s = 7 \$\$ sqrt{s}=7 \$\$ and 8 TeV. Journal of High Energy Physics, 2016, 2016, 1.	4.7	42
33	Measurement of the t t \hat{A}^- \$\$ mathrm{t}overline{mathrm{t}} \$\$ production cross section in the ell/4 channel in proton-proton collisions at s = 7 \$\$ sqrt{s}=7 \$\$ and 8 TeV. Journal of High Energy Physics, 2016, 2016, 1.	4.7	41
34	Measurement of the $\mbox{mathrm{t}}$ overline{{mathrm{t}}}\$\$ t t $\mbox{$\hat{A}^{-}$}$ production cross section in the all-jets final state in pp collisions at \$\$\$qrt{s}=8\$\$ s = 8 \$\$,ext {TeV}\$\$ TeV. European Physical Journal C, 2016, 76, 128.	3.9	41
35	Search for third-generation scalar leptoquarks and heavy right-handed neutrinos in final states with two tau leptons and two jets in proton-proton collisions at $s=13~$ \$\$ sqrt{ s }=13 \$\$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	41
36	Measurement of the $\frac{t}{\sigma}$ mathrm $t}$ overline t^2 \$\frac{t}{\tilde{L}} \\$ t t \hat{\tilde{L}}^2\$ production cross section using events in the \$\$\mathrm{e}\mu \$\$ e \hat{\tilde{L}}^4\$ final state in pp collisions at \$\$\sqrt{s}=13\$, ext {TeV} \$\$ s = 13 TeV. European Physical Journal C, 2017, 77, 172.	3.9	40

#	Article	IF	CITATIONS
37	Search for new physics in dijet angular distributions using proton–proton collisions at \$\$sqrt{s}=13hbox {TeV}\$\$ and constraints on dark matter and other models. European Physical Journal C, 2018, 78, 789.	3.9	40
38	Measurement of the Higgs boson production rate in association with top quarks in final states with electrons, muons, and hadronically decaying tau leptons at $\$$ qrt $\{s\} = 13$,ext $\{Te\}$ ext $\{V\}$ $\$$. European Physical Journal C, 2021, 81, 378.	3.9	40
39	Measurement of differential cross sections for $\{z\}$ voson production in association with jets in proton-proton collisions at $\{z\}$ = 13,ext $\{z\}$ s = 13 TeV. European Physical Journal C, 2018, 78, 965.	3.9	39
40	Search for heavy resonances that decay into a vector boson and a Higgs boson in hadronic final states at $\$$ sqrt $\{s\} = 13$ \$\$ s = 13 \$\$,ext {TeV}\$\$ TeV. European Physical Journal C, 2017, 77, 636.	3.9	38
41	Evidence for associated production of a Higgs boson with a top quark pair in final states with electrons, muons, and hadronically decaying \ddot{l}_n leptons at \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	38
42	Searches for third-generation squark production in fully hadronic final states in proton-proton collisions at $s = 8 $ \$ sqrt $\{s\}=8 $ \$ TeV. Journal of High Energy Physics, 2015, 2015, 1.	4.7	37
43	Measurement of the WZ production cross section in pp collisions at $\$$ sqrt $\{s\}$ = 7\$\$ s = 7 and 8 \$\$,ext $\{TeV\}$ \$\$ TeV and search for anomalous triple gauge couplings at $\$$ sqrt $\{s\}$ = 8,ext $\{TeV\}$ \$\$ s = 8 TeV. European Physical Journal C, 2017, 77, 236.	3.9	37
44	Search for resonant and nonresonant Higgs boson pair production in the b b $\hat{A}^ \hat{a}$, " $\hat{1}$ / $2\hat{a}$," $\hat{1}$ / $2\hat{a}$, " $\hat{1}$ / $2\hat{a}$," $\hat{1}$ / $2\hat{a}$, " $\hat{1}$ / $2\hat{a}$," $\hat{1}$ / $2\hat{a}$, " $\hat{1}$ / $2\hat{a}$," $\hat{1}$ / $2\hat{a}$, " $\hat{1}$ / $2\hat{a}$," $\hat{1}$ / $2\hat{a}$, " $\hat{1}$ / $2\hat{a}$," $\hat{1}$ / $2\hat{a}$, " $\hat{1}$ / $2\hat{a}$," $\hat{1}$ / $2\hat{a}$, " $\hat{1}$ / $2\hat{a}$," $\hat{1}$ / $2\hat{a}$, " $\hat{1}$ / $2\hat{a}$," $\hat{1}$ / $2\hat{a}$, " $\hat{1}$ / $2\hat{a}$," $\hat{1}$ / $2\hat{a}$	4.7	36
45	Search for heavy Majorana neutrinos in $e\hat{A}\pm e\hat{A}\pm + j$ ets and $e\hat{A}\pm \hat{I}\frac{1}{4}$ $\hat{A}\pm + j$ ets events in proton-proton collisions at $s=8$ \$\$ sqrt{s}=8 \$\$ TeV. Journal of High Energy Physics, 2016, 2016, 1.	4.7	35
46	Search for anomalous Wtb couplings and flavour-changing neutral currents in t-channel single top quark production in pp collisions at $s=7$ \$\$ $sqt{s}=7$ \$\$ and 8 TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	35
47	Measurements of production cross sections of the Higgs boson in the four-lepton final state in proton–proton collisions at \$\$sqrt{s} = 13,ext {TeV} \$\$. European Physical Journal C, 2021, 81, 488.	3.9	35
48	Measurement of \$\$mathrm $\{t\}$ overline $\{mathrm \{t\}\}$ \$\$ t t \hat{A}^- production with additional jet activity, including \$\$mathrm $\{b\}$ \$\$ b quark jets, in the dilepton decay channel using pp collisions at \$\$sqrt{s} = 8,ext {TeV} \$\$ s = 8 TeV. European Physical Journal C, 2016, 76, 379.	3.9	34
49	Measurements of the $\mbox{mathrm{t}}$ overline{mathrm{t}}\$\$ t t $\mbox{\^A}^-$ production cross section in lepton+jets final states in pp collisions at 8 \$\$,ext {TeV}\$\$ TeV and ratio of 8 to 7 $\mbox{\^A}$ \$\$,ext {TeV}\$\$ TeV cross sections. European Physical Journal C, 2017, 77, 15.	3.9	34
50	Measurement of the top quark mass with lepton+jets final states using $\$$ mathrm {p} $\$$ mathrm {p} $\$$ nathrm {p} $\$$ s collisions at $\$$ sqrt $\$$ 13,ext {TeV} $\$$ 8. European Physical Journal C, 2018, 78, 891.	3.9	34
51	Search for single production of vector-like quarks decaying to a top quark and a \$\$mathrm {W} \$\$ W boson in proton–proton collisions at \$\$sqrt{s} = 13 ,ext {TeV} \$\$ s = 13 TeV. European Physical Journal C, 2019, 79, 90.	3.9	34
52	Search for heavy resonances decaying to two Higgs bosons in final states containing four b quarks. European Physical Journal C, 2016, 76, 371.	3.9	33
53	Search for dark matter produced in association with a leptonically decaying \$\${mathrm{Z}} \$\$ boson in proton–proton collisions at \$\$sqrt{s}=13,ext {Te}ext {V} \$\$. European Physical Journal C, 2021, 81, 13.	3.9	33
54	Search for top squark pair production using dilepton final states in $\{p\}$ ext $\{p\}$ s collision data collected at $\{p\}$ at $\{p\}$ s. European Physical Journal C, 2021, 81, 3.	3.9	33

#	Article	IF	CITATIONS
55	Searches for pair production of third-generation squarks in $\frac{13}{s} = 13$, ext TeV , TeV pp collisions. European Physical Journal C, 2017, 77, 327.	3.9	32
56	Measurement of transverse momentum relative to dijet systems in PbPb and pp collisions at s N N = 2.76 \$\$ sqrt{s_{mathrm{NN}}}= 2.76 \$\$ TeV. Journal of High Energy Physics, 2016, 2016, 1.	4.7	31
57	Search for top squark pair production in pp collisions at $s=13~$ \$\$ sqrt $s=13~$ \$\$ TeV using single lepton events. Journal of High Energy Physics, 2017, 2017, 1.	4.7	31
58	Search for neutral MSSM Higgs bosons decaying into a pair of bottom quarks. Journal of High Energy Physics, 2015, 2015, 1.	4.7	30
59	Search for massive WH resonances decaying into the \$\$ell u mathrm{b} overline{mathrm{b}} \$\$ â," $\hat{l}^{1/2}$ b b \hat{A}^- final state at \$\$sqrt{s}=8\$\$ s = 8 \$\$~ext {TeV}\$\$ TeV. European Physical Journal C, 2016, 76, 237.	3.9	30
60	Measurements of the associated production of a Z boson and b jets in pp collisions at $\$\{qrt\{s\}\} = 8$, ext $TeV\}$ \$\$ s = 8 TeV. European Physical Journal C, 2017, 77, 751.	3.9	30
61	Measurement of inclusive jet production and nuclear modifications in pPb collisions at $\$sqrt{s_{mathrm {NN}}} = 5.02, mathrm{TeV} \$$ s NN. European Physical Journal C, 2016, 76, 372.	3.9	29
62	Correlations between jets and charged particles in PbPb and pp collisions at s N N = $2.76 \$$ sqrt{s_{mathrm{NN}}}= $2.76 \$$ TeV. Journal of High Energy Physics, 2016, 2016, 1.	4.7	29
63	A search for new phenomena in pp collisions at $\$$ sqrt $\{s\} = 13$,ext $\{TeV\}$ $\$$ s = 13 TeV in final states with missing transverse momentum and at least one jet using the $\$$ alpha $_{\text{mathrm }}$ $\{T\}$	3.9	29
64	Search for light bosons in decays of the 125 GeV Higgs boson in proton-proton collisions at $s=8$ \$\$ sqrt{s}=8 \$\$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	29
65	Search for dark matter produced in association with a Higgs boson decaying to a pair of bottom quarks in proton–proton collisions at \$\$sqrt{s}=13,ext {Te}ext {V} \$\$ s = 13 Te. European Physical Journal C, 2019, 79, 280.	3.9	29
66	Search for $\$$ mathrm{t}overline{mathrm{t}}mathrm{H} \\$\$ production in the \\$\$ mathrm{H}o mathrm{b}overline{mathrm{b}} \\$\$ decay channel with leptonic \\$\$ mathrm{t}overline{mathrm{t}} \\$\$ decays in proton-proton collisions at \\$\$ sqrt{s}=13 \\$\$ TeV. Journal of High Energy Physics, 2019, 2019, 1.	4.7	28
67	Measurements of differential Z boson production cross sections in proton-proton collisions at \$\$ sqrt{s} \$\$ = 13 TeV. Journal of High Energy Physics, 2019, 2019, 1.	4.7	28
68	Search for anomalous single top quark production in association with a photon in pp collisions at s = $8 $ \$\$ sqrt $\{s\}=8 $ \$\$ TeV. Journal of High Energy Physics, 2016, 2016, 1.	4.7	27
69	Search for pair production of vector-like T and B quarks in single-lepton final states using boosted jet substructure in proton-proton collisions at $$$ sqrt ${s}=13$ $$$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	27
70	Search for new physics in events with a leptonically decaying Z boson and a large transverse momentum imbalance in proton–proton collisions at \$\$sqrt{s} \$\$ s = 13 \$\$,ext {TeV}\$\$ TeV. European Physical Journal C, 2018, 78, 291.	3.9	27
71	Measurements of Higgs boson production cross sections and couplings in the diphoton decay channel at \$\$ sqrt{mathrm{s}} \$\$ = 13 TeV. Journal of High Energy Physics, 2021, 2021, 1.	4.7	27
72	Measurement of the inclusive jet cross section in pp collisions at $\$$ sqrt $\{s\}$ = 2.76,ext $\{TeV\}$ \$\$ s = 2.76 TeV. European Physical Journal C, 2016, 76, 1.	3.9	26

#	Article	IF	Citations
73	Forward–backward asymmetry of Drell–Yan lepton pairs in pp collisions at \$\$sqrt{s} = 8\$\$ s = 8 \$\$,mathrm{TeV}\$\$ TeV. European Physical Journal C, 2016, 76, 325.	3.9	25
74	Search for high-mass resonances in final states with a lepton and missing transverse momentum at $\$$ sqrt $\{s\}=13$ $\$$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	25
7 5	Search for third-generation scalar leptoquarks in the $t\ddot{i}$, channel in proton-proton collisions at $s=8$ \$\$ sqrt $\{s\}=8$ \$\$ TeV. Journal of High Energy Physics, 2015, 2015, 1.	4.7	24
76	Measurements of $f^{p} {\mathrm{p}} {\mathrm{p}} {\mathrm{p}} {\mathrm{p}} {\mathrm{p}} {\mathrm{production cross sections and constraints on anomalous triple gauge couplings at $$$qrt{s} = 13,ext {TeV} $$. European Physical Journal C, 2021, 81, 200.$	3.9	24
77	Observation of top quark pairs produced in association with a vector boson in pp collisions at $s=8$ \$\$ sqrt{ s }=8 \$\$ TeV. Journal of High Energy Physics, 2016, 2016, 1.	4.7	23
78	Search for heavy resonances decaying to tau lepton pairs in proton-proton collisions at $s=13 \$$ sqrt $\{s\}=13 \$$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	23
79	Measurement of the transverse momentum spectra of weak vector bosons produced in proton-proton collisions at $s = 8 $ \$\$ sqrt $\{s\}=8 $ \$\$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	23
80	Measurement of the top quark mass using single top quark events in proton-proton collisions at $\$$ sqrt $\{s\}$ = 8 $\$$ s s = 8 ÂTeV. European Physical Journal C, 2017, 77, 354.	3.9	23
81	Measurement of the triple-differential dijet cross section in proton-proton collisions at $\$sqrt\{s\}=8,ext\{TeV\}$ \$\$ s = 8 TeV and constraints on parton distribution functions. European Physical Journal C, 2017, 77, 746.	3.9	23
82	Search for dark matter and unparticles in events with a Z boson and missing transverse momentum in proton-proton collisions at $\$$ sqrt $\{s\}=13$ $\$$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	23
83	Search for t t \hat{A}^- \$\$ mathrm{t}overline{mathrm{t}} \$\$ resonances in highly boosted lepton+jets and fully hadronic final states in proton-proton collisions at s = 13 \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	22
84	Search for massive resonances decaying into WW, WZ or ZZ bosons in proton-proton collisions at s = $13 $ \$\$ sqrt{s}= $13 $ \$\$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	22
85	Search for direct production of supersymmetric partners of the top quark in the all-jets final state in proton-proton collisions at $s=13$ \$\$ sqrt{ s }=13 \$\$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	22
86	Search for heavy neutrinos or third-generation leptoquarks in final states with two hadronically decaying \ddot{l} , leptons and two jets in proton-proton collisions at $s=13$ \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	22
87	Search for associated production of a Z boson with a single top quark and for tZ flavour-changing interactions in pp collisions at $s = 8 $ sqrt $\{s\}=8 $ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	21
88	A Deep Neural Network for Simultaneous Estimation of b Jet Energy and Resolution. Computing and Software for Big Science, 2020, 4, 10.	2.9	21
89	Search for direct top squark pair production in events with one lepton, jets, and missing transverse momentum at 13 TeV with the CMS experiment. Journal of High Energy Physics, 2020, 2020, 1.	4.7	21
90	Azimuthal decorrelation of jets widely separated in rapidity in pp collisions at $s = 7 $ \$ sqrt $\{s\}=7 $ \$ TeV. Journal of High Energy Physics, 2016, 2016, 1.	4.7	20

#	Article	IF	CITATIONS
91	Search for $\$$ mathrm $\{t\}$ overline $\{mathrm\{t\}\}$ mathrm $\{H\}$ $\$$ production in the all-jet final state in proton-proton collisions at $\$$ sqrt $\{s\}$ =13 $\$$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	20
92	Search for dark matter in events with energetic, hadronically decaying top quarks and missing transverse momentum at $\$$ sqrt $\{s\}=13$ $\$$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	20
93	Measurement of top quark pair production in association with a Z boson in proton-proton collisions at $\$$ sqrt{mathrm{s}} $\$$ = 13 TeV. Journal of High Energy Physics, 2020, 2020, 1.	4.7	20
94	Measurement of differential and integrated fiducial cross sections for Higgs boson production in the four-lepton decay channel in pp collisions at $s=7$ \$\$ sqrt{s}=7 \$\$ and 8 TeV. Journal of High Energy Physics, 2016, 2016, 1.	4.7	19
95	Search for a very light NMSSM Higgs boson produced in decays of the 125 GeV scalar boson and decaying into \ddot{l} , leptons in pp collisions at s = 8 \$\$ sqrt{s}=8 \$\$ TeV. Journal of High Energy Physics, 2016, 2016, 1.	4.7	19
96	Search for charged Higgs bosons produced in vector boson fusion processes and decaying into vector boson pairs in proton–proton collisions at \$\$sqrt{s} = 13,{ext {TeV}} \$\$. European Physical Journal C, 2021, 81, 723.	3.9	19
97	Decomposing transverse momentum balance contributions for quenched jets in PbPb collisions at s N N = 2.76 $\$$ sqrt{s_{mathrm{N};mathrm{N}}}=2.76 $\$$ TeV. Journal of High Energy Physics, 2016, 2016, 1.	4.7	18
98	Search for direct pair production of supersymmetric top quarks decaying to all-hadronic final states in pp collisions at $\$$ qrt $\{s\} = 8$;ext $\{TeV\}$ $\$$ s = 8 TeV. European Physical Journal C, 2016, 76, 460.	3.9	18
99	Measurement of normalized differential $\$ mathrm{t}overline{mathrm{t}} \$\$ cross sections in the dilepton channel from pp collisions at \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	18
100	Measurement of the differential Drell-Yan cross section in proton-proton collisions at $\$$ sqrt{mathrm{s}} $\$$ = 13 TeV. Journal of High Energy Physics, 2019, 2019, 1.	4.7	18
101	MUSiC: a model-unspecific search for new physics in proton–proton collisions at \$\$sqrt{s} = 13,ext {TeV} \$\$. European Physical Journal C, 2021, 81, 629.	3.9	18
102	Combined searches for the production of supersymmetric top quark partners in proton–proton collisions at \$\$sqrt{s} = 13,ext {Te}ext {V} \$\$. European Physical Journal C, 2021, 81, 970.	3.9	18
103	Search for low-mass dilepton resonances in Higgs boson decays to four-lepton final states in proton–proton collisions at \$\$sqrt{s}=13,ext {TeV} \$\$. European Physical Journal C, 2022, 82, 290.	3.9	18
104	Search for Higgs boson off-shell production in proton-proton collisions at 7 and 8 TeV and derivation of constraints on its total decay width. Journal of High Energy Physics, 2016, 2016, 1.	4.7	17
105	Search for new physics with the M T2 variable in all-jets final states produced in pp collisions at $s=13$ \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2016, 2016, 1.	4.7	17
106	Search for new physics in the monophoton final state in proton-proton collisions at $s=13 \$$ sqrt $\{s\}=13 \$$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	17
107	Measurement of electroweak-induced production of \hat{W}^3 with two jets in pp collisions at s = 8 \$\$ sqrt{s}=8 \$\$ TeV and constraints on anomalous quartic gauge couplings. Journal of High Energy Physics, 2017, 2017, 1.	4.7	17
108	Measurements of jet charge with dijet events in pp collisions at $s = 8 $ \$\$ sqrt{s}=8 \$\$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	17

#	Article	IF	CITATIONS
109	Search for $Z\hat{I}^3$ resonances using leptonic and hadronic final states in proton-proton collisions at \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	17
110	Measurement of charged particle spectra in minimum-bias events from proton–proton collisions at \$\$sqrt{s}=13,ext {TeV} \$\$ s = 13 TeV. European Physical Journal C, 2018, 78, 697.	3.9	17
111	Electroweak production of two jets in association with a Z boson in proton–proton collisions at \$\$\$qrt{s}= \$\$ s = 13 \$\$,ext {TeV}\$\$ TeV. European Physical Journal C, 2018, 78, 1.	3.9	17
112	Search for dark matter produced in association with a single top quark or a top quark pair in proton-proton collisions at \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2019, 2019, 1.	4.7	17
113	Search for lepton flavour violating decays of heavy resonances and quantum black holes to an \$\$mathrm {e}mu \$\$ e μ pair in proton–proton collisions at \$\$sqrt{s}=8~ext {TeV} \$\$ s = 8 TeV. European Physical Journal C, 2016, 76, 317.	3.9	16
114	Search for excited leptons in proton-proton collisions at s = $8 $ \$\$ sqrt{s}= $8 $ \$\$ TeV. Journal of High Energy Physics, 2016, 2016, 1.	4.7	16
115	Search for a massive resonance decaying into a Higgs boson and a W or Z boson in hadronic final states in proton-proton collisions at $s = 8 $ \$ sqrt $\{s\}=8 $ \$ TeV. Journal of High Energy Physics, 2016, 2016, 1.	4.7	16
116	Measurement of the production cross section of a WÂboson in association with two b jets in pp collisions at $\$$ sqrt{s} = 8{,mathrm{{TeV}}} \$\$ s = 8 TeV. European Physical Journal C, 2017, 77, 92.	3.9	16
117	Measurement of associated Z + charm production in proton–proton collisions at \$\$\$qrt{s} = 8\$\$ s = 8 \$\$,ext {TeV}\$\$ TeV. European Physical Journal C, 2018, 78, 287.	3.9	16
118	Measurement of top quark polarisation in t-channel single top quark production. Journal of High Energy Physics, 2016, 2016, 1.	4.7	15
119	Search for electroweak production of charginos and neutralinos in WH events in proton-proton collisions at $\$$ sqrt $\{s\}=13$ $\$$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	15
120	Search for top quark decays via Higgs-boson-mediated flavor-changing neutral currents in pp collisions at $s = 8 $ \$\$ sqrt $\{s\}=8 $ \$\$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	15
121	Measurement of the t t \hat{A}^- \$\$ mathrm{t}overline{mathrm{t}} \$\$ production cross section using events with one lepton and at least one jet in pp collisions at s = 13 \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	15
122	Search for new physics with dijet angular distributions in proton-proton collisions at $s=13 $ \$\$ sqrt $s=13 $ \$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	15
123	Search for s channel single top quark production in pp collisions at $s = 7 $ \$\$ sqrt{s}=7 \$\$ and 8 TeV. Journal of High Energy Physics, 2016, 2016, 1.	4.7	14
124	Search for supersymmetry in pp collisions at $s = 13 $ \$\$ sqrt $\{s\}=13 $ \$\$ TeV in the single-lepton final state using the sum of masses of large-radius jets. Journal of High Energy Physics, 2016, 2016, 1.	4.7	14
125	Search for associated production of dark matter with a Higgs boson decaying to b b \hat{A}^- \$\$ mathrm{b}overline{mathrm{b}} \$\$ or $\hat{I}^3\hat{I}^3$ at s = 13 \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	14
126	Measurements of differential production cross sections for a Z boson in association with jets in pp collisions at $s = 8 $ \$\$ sqrt $\{s\}=8 $ \$\$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	14

#	Article	IF	Citations
127	Search for electroweak production of a vector-like quark decaying to a top quark and a Higgs boson using boosted topologies in fully hadronic final states. Journal of High Energy Physics, 2017, 2017, 1.	4.7	14
128	Search for supersymmetry in events with at least one photon, missing transverse momentum, and large transverse event activity in proton-proton collisions at $s=13$ \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	14
129	Search for black holes and sphalerons in high-multiplicity final states in proton-proton collisions at \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	14
130	Studies of \$\${mathrm {B}} ^{*}_{{mathrm {s}}2}(5840)^0 \$\$ B s 2 \hat{a} — (5840) 0 and \$\${mathrm {B}}		

#	Article	IF	Citations
145	Search for heavy resonances decaying into two Higgs bosons or into a Higgs boson and a W or Z boson in proton-proton collisions at 13 TeV. Journal of High Energy Physics, 2019, 2019, 1.	4.7	12
146	Development and validation of HERWIGÂ7 tunes from CMS underlying-event measurements. European Physical Journal C, 2021, 81, 312.	3.9	12
147	Search for a right-handed W boson and a heavy neutrino in proton-proton collisions at $\$$ sqrt $\{s\}$ \$ = 13 TeV. Journal of High Energy Physics, 2022, 2022, 1.	4.7	12
148	Search for electroweak production of charginos in final states with two \ddot{l} , leptons in pp collisions at s = 8 \$\$ sqrt{s}=8 \$\$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	11
149	Measurement of the semileptonic t t \hat{A}^- \$\$ mathrm{t}overline{mathrm{t}} \$\$ + \hat{I}^3 production cross section in pp collisions at s = 8 \$\$ sqrt{s}=8 \$\$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	11
150	Measurement of the transverse momentum spectrum of the Higgs boson produced in pp collisions at s = 8 \$\$ sqrt{s}=8 \$\$ TeV using H â†' WW decays. Journal of High Energy Physics, 2017, 2017, 1.	4.7	11
151	Search for heavy resonances decaying into a vector boson and a Higgs boson in final states with charged leptons, neutrinos and b quarks at $\$$ sqrt $\{s\}=13$ $\$$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	11
152	Measurement of the underlying event activity using charged-particle jets in proton-proton collisions at $s=2.76$ \$\$ sqrt{s}=2.76 \$\$ TeV. Journal of High Energy Physics, 2015, 2015, 1.	4.7	10
153	Measurements of the pp \hat{a} †' $\hat{W}^{\hat{i}\hat{j}\hat{i}\hat{j}}$ and pp \hat{a} †' $\hat{Z}^{\hat{i}\hat{j}\hat{j}}$ cross sections and limits on anomalous quartic gauge couplings at s = 8 \$\$ sqrt{s}=8 \$\$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	^S 4.7	10
154	Measurement of the inclusive energy spectrum in the very forward direction in proton-proton collisions at $s=13$ \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	10
155	Search for a light pseudoscalar Higgs boson produced in association with bottom quarks in pp collisions at \$\$ sqrt{s}=8 \$\$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	10
156	Search for a heavy resonance decaying into a Z boson and a vector boson in the $\$ u overline{u}mathrm{q}overline{mathrm{q}} \$\$ final state. Journal of High Energy Physics, 2018, 2018, 1.	4.7	10
157	Search for a heavy vector resonance decaying to a $f(Z)_{\mathrm{mathrm}}^{\mathrm{Z}}_{\mathrm{mathrm}}$ mathrm $f(Z)_{\mathrm{mathrm}}^{\mathrm{Z}}$ hoson and a Higgs boson in proton-proton collisions at $f(Z)_{\mathrm{mathrm}}^{\mathrm{Z}}_{\mathrm{mathrm}}^{\mathrm{Z}}$. European Physical Journal C, 2021, 81, 688.	3.9	9
158	Searches for W′ bosons decaying to a top quark and a bottom quark in proton-proton collisions at 13 TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	8
159	Search for a heavy resonance decaying into a Z boson and a Z or W boson in $2\hat{a}$, "2q final states at \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	8
160	Search for new physics in final states with two opposite-sign, same-flavor leptons, jets, and missing transverse momentum in pp collisions at $s = 13 $ \$ sqrt{ s }=13 \$\$ TeV. Journal of High Energy Physics, 2016, 2016, 1.	4.7	8
161	Search for direct pair production of scalar top quarks in the single- and dilepton channels in proton-proton collisions at $s=8$ \$\$ sqrt{ s }=8 \$\$ TeV. Journal of High Energy Physics, 2016, 2016, 1.	4.7	7
162	Search for high-mass $Z^{\hat{1}3}$ resonances in e+eâ ⁻ ' $\hat{1}^3$ and $\hat{1}^1/4 + \hat{1}^1/4$ â ⁻ ' $\hat{1}^3$ final states in proton-proton collisions at s = 8 \$\$ sqrt{s}=8 \$\$ and 13 TeV. Journal of High Energy Physics, 2017, 2017, 1.	⁵ 4.7	7

#	Article	IF	CITATIONS
163	Comparison of the Z/\hat{I}^3 \hat{a} — + jets to \hat{I}^3 + jets cross sections in pp collisions at s = 8 \$\$ sqrt{s}=8 \$\$ TeV. Journal of High Energy Physics, 2015, 2015, 1.	4.7	6
164	Measurement of the mass of the top quark in decays with a J/ $\hat{\Gamma}$ meson in pp collisions at 8 TeV. Journal of High Energy Physics, 2016, 2016, 1.	4.7	6
165	Inclusive and differential cross section measurements of single top quark production in association with a Z boson in proton-proton collisions at $\$$ sqrt $\{s\}$ $\$$ = 13 TeV. Journal of High Energy Physics, 2022, 2022, 1.	4.7	6
166	Search for heavy resonances decaying to ZZ or ZW and axion-like particles mediating nonresonant ZZ or ZH production at $\$$ sqrt $\{s\}$ $\$$ = 13 TeV. Journal of High Energy Physics, 2022, 2022, 1.	4.7	6
167	Measurement of electroweak production of a W boson and two forward jets in proton-proton collisions at $s = 8 $ sqrt $\{s\} = 8 $ TeV. Journal of High Energy Physics, 2016, 2016, 1.	4.7	5
168	Search for the production of an excited bottom quark decaying to tW in proton-proton collisions at $s = 8 $ \$\$ sqrt s =8 \$\$ TeV. Journal of High Energy Physics, 2016, 2016, 1.	4.7	5
169	Search for a heavy resonance decaying to a top quark and a vector-like top quark at $s=13~$ \$\$ sqrt $\{s\}=13~$ \$\$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	5
170	Search for the pair production of light top squarks in the $e\hat{A}\pm\hat{l}^{1}/4\hat{a}^{**}$ final state in proton-proton collisions at \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2019, 2019, 1.	4.7	5
171	Measurement of single-diffractive dijet production in proton–proton collisions at \$\$sqrt{s} = 8,ext {Te}ext {V} \$\$ with the CMS and TOTEM experiments. European Physical Journal C, 2020, 80, 1164.	3.9	5
172	Search for flavor-changing neutral current interactions of the top quark and the Higgs boson decaying to a bottom quark-antiquark pair at $$$ sqrt ${s}$ $$$ = 13 TeV. Journal of High Energy Physics, 2022, 2022, 1.	4.7	5
173	Search for long-lived particles decaying into muon pairs in proton-proton collisions at \$\$ sqrt{s} \$\$ = 13 TeV collected with a dedicated high-rate data stream. Journal of High Energy Physics, 2022, 2022, .	4.7	5
174	Measurement and QCD analysis of double-differential inclusive jet cross sections in proton-proton collisions at $\$\$$ sqrt $\{\$\}$ $\$\$$ = 13 TeV. Journal of High Energy Physics, 2022, 2022, 1.	4.7	5
175	Search for electroweak production of charginos and neutralinos in proton-proton collisions at $\$$ sqrt $\{s\}$ $\$\$$ = 13 TeV. Journal of High Energy Physics, 2022, 2022, 1.	4.7	5
176	Search for dark matter particles in proton-proton collisions at $s = 8 $ \$ sqrt $\{s\} = 8 $ \$ TeV using the razor variables. Journal of High Energy Physics, 2016, 2016, 1.	4.7	4
177	Search for CP violation in t t \hat{A}^- \$\$ toverline{t} \$\$ production and decay in proton-proton collisions at s = 8 \$\$ sqrt{s}=8 \$\$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	4
178	Search for higgsinos decaying to two Higgs bosons and missing transverse momentum in proton-proton collisions at $$$ sqrt $\{s\}$ $$$ = 13 TeV. Journal of High Energy Physics, 2022, 2022, .	4.7	4
179	Search for Wâ \in 2 → tb in proton-proton collisions at s = 8 \$\$ sqrt{s}=8 \$\$ TeV. Journal of High Energy Physics, 2016, 2016, 1.	4.7	3
180	Search for top quark partners with charge $5/3$ in proton-proton collisions at $s = 13 $ \$\$ sqrt{ s }=13 \$\$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	3

#	Article	IF	CITATIONS
181	Measurements of the (mathrm $\{p\}$ mathrm $\{p\}$ ightarrow mathrm $\{Z\}$ mathrm $\{Z\}$) production cross section and the (mathrm $\{Z\}$ ightarrow 4ell) branching fraction, and constraints on anomalous triple gauge couplings at $\{q \in Y\}$, $\{z \in Y\}$		3
182	Search for new phenomena with multiple charged leptons in protonâ€"proton collisions at \$\$sqrt{s}= 13\$\$ s = 13 \$\$,ext {TeV}\$\$ TeV. European Physical Journal C, 2017, 77, 1.	3.9	2
183	Measurements of angular distance and momentum ratio distributions in three-jet and $\{Z\}$ + two-jet final states in $\{p\}$ ext $\{p\}$ collisions. European Physical Journal C, 2021, 81, 852.	3.9	2
184	Search for a heavy resonance decaying into a top quark and a W boson in the lepton+jets final state at \$\$ sqrt{s} \$\$ = 13 TeV. Journal of High Energy Physics, 2022, 2022, 1.	4.7	2
185	Measurement of the inclusive $\mbox{mathrm{t}}\$ mathrm{t} verline{mathrm{t}} \$\$ production cross section in proton-proton collisions at \$\$ sqrt{s} \$\$ = 5.02 TeV. Journal of High Energy Physics, 2022, 2022, 1.	4.7	2
186	Search for heavy resonances decaying to a pair of Lorentz-boosted Higgs bosons in final states with leptons and a bottom quark pair at $\$$ sqrt $\{s\}$ $\$$ = 13 TeV. Journal of High Energy Physics, 2022, 2022, .	4.7	2
187	Search for neutral color-octet weak-triplet scalar particles in proton-proton collisions at $s=8$ \$\$ sqrt{ s }=8 \$\$ TeV. Journal of High Energy Physics, 2015, 2015, 1.	4.7	1
188	Study of dijet events with large rapidity separation in proton-proton collisions at $\$\$$ sqrt $\{\$\}$ = 2.76 TeV. Journal of High Energy Physics, 2022, 2022, 1.	4.7	1
189	Observation of B\$\$^0\$\$ \$\$ightarrow \$\$ \$\$uppsi \$\$(2S)K\$\$^0_mathrm $\{S\}$ uppi ^+uppi ^-\$\$ and B\$\$^0_mathrm $\{s\}$ \$\$ \$\$ightarrow \$\$ \$\$uppsi \$\$(2S)K\$\$^0_mathrm $\{S\}$ \$\$ decays. European Physical Journal C, 2022, 82, .	3.9	1
190	Search for natural supersymmetry in events with top quark pairs and photons in pp collisions at \$\$ sqrt{s}=8 \$\$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	0