Xiaogang Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8386445/publications.pdf

Version: 2024-02-01

XIAOCANC LIU

#	Article	IF	CITATIONS
1	Noninvasive Manipulation of Ion Channels for Neuromodulation and Theranostics. Accounts of Materials Research, 2022, 3, 247-258.	11.7	11
2	Rare-Earth Doping in Nanostructured Inorganic Materials. Chemical Reviews, 2022, 122, 5519-5603.	47.7	338
3	Self-assembly of colloidal inorganic nanocrystals: nanoscale forces, emergent properties and applications. Chemical Society Reviews, 2021, 50, 2074-2101.	38.1	54
4	Oxidative Sulfonylation of Hydrazones Enabled by Synergistic Copper/Silver Catalysis. Journal of Organic Chemistry, 2021, 86, 3706-3720.	3.2	19
5	Lanthanide-doped nanoparticles in photovoltaics – more than just upconversion. Journal of Materials Chemistry C, 2021, 9, 16110-16131.	5.5	19
6	Surface Plasmon–Photon Coupling in Lanthanide-Doped Nanoparticles. Journal of Physical Chemistry Letters, 2021, 12, 1520-1541.	4.6	52
7	Dynamic upconversion multicolour editing enabled by molecule-assisted opto-electrochemical modulation. Nature Communications, 2021, 12, 2022.	12.8	36
8	Enantiospecific Detection of Dâ€Amino Acid through Synergistic Upconversion Energy Transfer. Angewandte Chemie - International Edition, 2021, 60, 19648-19652.	13.8	13
9	Enantiospecific Detection of Dâ€Amino Acid through Synergistic Upconversion Energy Transfer. Angewandte Chemie, 2021, 133, 19800-19804.	2.0	2
10	Anomalous upconversion amplification induced by surface reconstruction in lanthanide sublattices. Nature Photonics, 2021, 15, 732-737.	31.4	77
11	Highâ€Specificity In Vivo Tumor Imaging Using Bioorthogonal NIRâ€IIb Nanoparticles. Advanced Materials, 2021, 33, e2102950.	21.0	46
12	(INVITED) Opposing effects of energy migration and cross-relaxation on surface sensitivity of lanthanide-doped nanocrystals. Optical Materials: X, 2021, 12, 100104.	0.8	3
13	Photo-Induced Cross-Dehydrogenative Alkylation of Heteroarenes with Alkanes under Aerobic Conditions. Journal of Organic Chemistry, 2021, 86, 17816-17832.	3.2	32
14	Spectral converters for photovoltaics – What's ahead. Materials Today, 2020, 33, 105-121.	14.2	83
15	Lanthanide-Activated Nanoparticles: A Toolbox for Bioimaging, Therapeutics, and Neuromodulation. Accounts of Chemical Research, 2020, 53, 2692-2704.	15.6	123
16	Photolithographic Fabrication of Upconversion Barcodes for Multiplexed Molecular Detection. Advanced Optical Materials, 2020, 8, 2001168.	7.3	8
17	Improving Cancer Immunotherapy Outcomes Using Biomaterials. Angewandte Chemie, 2020, 132, 17484-17495.	2.0	12
18	Improving Cancer Immunotherapy Outcomes Using Biomaterials. Angewandte Chemie - International Edition, 2020, 59, 17332-17343.	13.8	48

XIAOGANG LIU

#	Article	IF	CITATIONS
19	Expanding the Toolbox of Upconversion Nanoparticles for In Vivo Optogenetics and Neuromodulation. Advanced Materials, 2019, 31, e1803474.	21.0	118
20	Upconverting Nanorockers for Intracellular Viscosity Measurements During Chemotherapy. Advanced Biology, 2019, 3, e1900082.	3.0	12
21	Activating Antitumor Immunity and Antimetastatic Effect Through Polydopamineâ€Encapsulated Core–Shell Upconversion Nanoparticles. Advanced Materials, 2019, 31, e1905825.	21.0	179
22	Plasmonic bimetallic nanodisk arrays for DNA conformation sensing. Nanoscale, 2019, 11, 19291-19296.	5.6	10
23	Expanding the toolbox for lanthanide-doped upconversion nanocrystals. Journal Physics D: Applied Physics, 2019, 52, 383002.	2.8	27
24	Suppression of Defect-Induced Quenching via Chemical Potential Tuning: A Theoretical Solution for Enhancing Lanthanide Luminescence. Journal of Physical Chemistry C, 2019, 123, 11151-11161.	3.1	26
25	Upconversion superburst with sub-2 μs lifetime. Nature Nanotechnology, 2019, 14, 1110-1115.	31.5	130
26	Energy Flux Manipulation in Upconversion Nanosystems. Accounts of Chemical Research, 2019, 52, 228-236.	15.6	82
27	Energy-Transfer Editing in Lanthanide-Activated Upconversion Nanocrystals: A Toolbox for Emerging Applications. ACS Central Science, 2019, 5, 29-42.	11.3	127
28	All-inorganic perovskite nanocrystal scintillators. Nature, 2018, 561, 88-93.	27.8	1,274
29	Remote manipulation of upconversion luminescence. Chemical Society Reviews, 2018, 47, 6473-6485.	38.1	210
30	Rewritable Optical Memory Through Highâ€Registry Orthogonal Upconversion. Advanced Materials, 2018, 30, e1801726.	21.0	124
31	Advances in highly doped upconversion nanoparticles. Nature Communications, 2018, 9, 2415.	12.8	793
32	Lanthanide-Activated Phosphors Based on 4f-5d Optical Transitions: Theoretical and Experimental Aspects. Chemical Reviews, 2017, 117, 4488-4527.	47.7	702
33	Hedgehogâ€Like Upconversion Crystals: Controlled Growth and Molecular Sensing at Singleâ€Particle Level. Advanced Materials, 2017, 29, 1702315.	21.0	38
34	Unraveling Epitaxial Habits in the NaLnF ₄ System for Color Multiplexing at the Singleâ€Particle Level. Angewandte Chemie - International Edition, 2016, 55, 5718-5722.	13.8	83
35	Designing Upconversion Nanocrystals Capable of 745â€nm Sensitization and 803â€nm Emission for Deepâ€īssue Imaging. Chemistry - A European Journal, 2016, 22, 10801-10807.	3.3	34
36	Unraveling Epitaxial Habits in the NaLnF ₄ System for Color Multiplexing at the Singleâ€Particle Level. Angewandte Chemie, 2016, 128, 5812-5816.	2.0	72

XIAOGANG LIU

#	Article	IF	CITATIONS
37	Instantaneous ballistic velocity of suspended Brownian nanocrystals measured by upconversion nanothermometry. Nature Nanotechnology, 2016, 11, 851-856.	31.5	292
38	Multicolour synthesis in lanthanide-doped nanocrystals through cation exchange in water. Nature Communications, 2016, 7, 13059.	12.8	164
39	Remote Câ^'H Activation of Quinolines through Copperâ€Catalyzed Radical Crossâ€Coupling. Chemistry - an Asian Journal, 2016, 11, 882-892.	3.3	130
40	Subwavelength imaging through ion-beam-induced upconversion. Nature Communications, 2015, 6, 8832.	12.8	38
41	Temporal full-colour tuning through non-steady-state upconversion. Nature Nanotechnology, 2015, 10, 237-242.	31.5	834
42	Electroluminescence from europium(III) complexes. Coordination Chemistry Reviews, 2015, 293-294, 228-249.	18.8	189
43	Controlling upconversion nanocrystals for emerging applications. Nature Nanotechnology, 2015, 10, 924-936.	31.5	1,221
44	Preparation of core-shell NaGdF4 nanoparticles doped with luminescent lanthanide ions to be used as upconversion-based probes. Nature Protocols, 2014, 9, 1634-1644.	12.0	501