Gi-Hyeok Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8385815/publications.pdf Version: 2024-02-01

CI-HVEOR LEE

#	Article	IF	CITATIONS
1	Steric modulation of Na2Ti2O3(SiO4)·2H2O toward highly reversible Na ion intercalation/deintercalation for Na ion batteries. Chemical Engineering Journal, 2022, 431, 133245.	12.7	3
2	Regulating Pseudo-Jahn–Teller Effect and Superstructure in Layered Cathode Materials for Reversible Alkali-Ion Intercalation. Journal of the American Chemical Society, 2022, 144, 7929-7938.	13.7	22
3	Origin of enhanced reversible Na ion storage in hard carbon anodes through p-type molecular doping. Journal of Materials Chemistry A, 2022, 10, 16506-16513.	10.3	5
4	Utilizing Oxygen Redox in Layered Cathode Materials from Multiscale Perspective. Advanced Energy Materials, 2021, 11, 2003227.	19.5	39
5	Tuning local chemistry of P2 layered-oxide cathode for high energy and long cycles of sodium-ion battery. Nature Communications, 2021, 12, 2256.	12.8	183
6	Direct Cation–Cation Interactions Induced by Mg Dopants for Electron–Gas Behavior in α-Fe ₂ O ₃ . Journal of Physical Chemistry C, 2021, 125, 12893-12902.	3.1	5
7	Electrochemical grinding-induced metallic assembly exploiting a facile conversion reaction route of metal oxides toward Li ions. Acta Materialia, 2021, 211, 116863.	7.9	12
8	Microstructural Investigation into Na-Ion Storage Behaviors of Cellulose-Based Hard Carbons for Na-Ion Batteries. Journal of Physical Chemistry C, 2021, 125, 14559-14566.	3.1	15
9	Synergistic Catalysis of the Lattice Oxygen and Transition Metal Facilitating ORR and OER in Perovskite Catalysts for Li–O ₂ Batteries. ACS Catalysis, 2021, 11, 424-434.	11.2	72
10	Uncommon Behavior of Li Doping Suppresses Oxygen Redox in P2â€Type Manganeseâ€Rich Sodium Cathodes. Advanced Materials, 2021, 33, e2107141.	21.0	34
11	Thermally Activated P2â€O3 Mixed Layered Cathodes toward Synergistic Electrochemical Enhancement for Na Ion Batteries. Advanced Energy Materials, 2021, 11, 2102444.	19.5	17
12	Activating a Multielectron Reaction of NASICON-Structured Cathodes toward High Energy Density for Sodium-Ion Batteries. Journal of the American Chemical Society, 2021, 143, 18091-18102.	13.7	96
13	Engineering Solid Electrolyte Interphase on Red Phosphorus for Long-Term and High-Capacity Sodium Storage. Chemistry of Materials, 2020, 32, 448-458.	6.7	29
14	The origin of heavy element doping to relieve the lattice thermal vibration of layered materials for high energy density Li ion cathodes. Journal of Materials Chemistry A, 2020, 8, 12424-12435.	10.3	37
15	Reversible Anionic Redox Activities in Conventional LiNi _{1/3} Co _{1/3} Mn _{1/3} O ₂ Cathodes. Angewandte Chemie, 2020, 132, 8759-8766.	2.0	15
16	Reversible Anionic Redox Activities in Conventional LiNi _{1/3} Co _{1/3} Mn _{1/3} O ₂ Cathodes. Angewandte Chemie - International Edition, 2020, 59, 8681-8688.	13.8	91
17	Precipitates shape up. Nature Chemistry, 2019, 11, 685-686.	13.6	5
18	Controlling the Valence State of Cu Dopant in α-Fe2O3 Anodes: Effects on Crystal Structure and the Conversion Reactions with Alkali Ions. Chemistry of Materials, 2019, 31, 1268-1279.	6.7	23

GI-HYEOK LEE

#	Article	IF	CITATIONS
19	P2/O3 phase-integrated Na0.7MnO2 cathode materials for sodium-ion rechargeable batteries. Journal of Alloys and Compounds, 2019, 771, 987-993.	5.5	45
20	Bifunctional Conducting Polymer Coated CoP Core–Shell Nanowires on Carbon Paper as a Free‣tanding Anode for Sodium Ion Batteries. Advanced Energy Materials, 2018, 8, 1800283.	19.5	104
21	GeP3 with soft and tunable bonding nature enabling highly reversible alloying with Na ions. Materials Today Energy, 2018, 9, 126-136.	4.7	31
22	A reduced graphene oxide-encapsulated phosphorus/carbon composite as a promising anode material for high-performance sodium-ion batteries. Journal of Materials Chemistry A, 2017, 5, 3683-3690.	10.3	54
23	The synergistic effect of nitrogen doping and para-phenylenediamine functionalization on the physicochemical properties of reduced graphene oxide for electric double layer supercapacitors in organic electrolytes. Journal of Materials Chemistry A, 2017, 5, 12426-12434.	10.3	30
24	Cobalt phosphide nanoparticles embedded in nitrogen-doped carbon nanosheets: Promising anode material with high rate capability and long cycle life for sodium-ion batteries. Nano Research, 2017, 10, 4337-4350.	10.4	97
25	Urchinâ€Like CoSe ₂ as a Highâ€Performance Anode Material for Sodiumâ€Ion Batteries. Advanced Functional Materials, 2016, 26, 6728-6735.	14.9	471
26	Carbonâ€Coated Si Nanoparticles Anchored between Reduced Graphene Oxides as an Extremely Reversible Anode Material for High Energyâ€Density Liâ€Ion Battery. Advanced Energy Materials, 2016, 6, 1600904.	19.5	256
27	Cobaltâ€Doped FeS ₂ Nanospheres with Complete Solid Solubility as a Highâ€Performance Anode Material for Sodiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2016, 55, 12822-12826.	13.8	394
28	Cobaltâ€Doped FeS ₂ Nanospheres with Complete Solid Solubility as a Highâ€Performance Anode Material for Sodiumâ€lon Batteries. Angewandte Chemie, 2016, 128, 13014-13018.	2.0	268
29	Recent Developments of the Lithium Metal Anode for Rechargeable Nonâ€Aqueous Batteries. Advanced Energy Materials, 2016, 6, 1600811.	19.5	306
30	Fe3O4 nanoparticles encapsulated in one-dimensional Li4Ti5O12 nanomatrix: An extremely reversible anode for long life and high capacity Li-ion batteries. Nano Energy, 2016, 19, 246-256.	16.0	28
31	Controlling Solid-Electrolyte-Interphase Layer by Coating P-Type Semiconductor NiO _{<i>x</i>} on Li ₄ Ti ₅ O ₁₂ for High-Energy-Density Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2015, 7, 27934-27939.	8.0	26
32	Bifunctional Li 4 Ti 5 O 12 coating layer for the enhanced kinetics and stability of carbon anode for lithium rechargeable batteries. Journal of Alloys and Compounds, 2014, 615, 220-226.	5.5	5