Jin-Cun Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8385444/publications.pdf

Version: 2024-02-01

38742 22832 14,682 134 50 112 citations h-index g-index papers 151 151 151 26508 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Remdesivir Metabolite GS-441524 Effectively Inhibits SARS-CoV-2 Infection in Mouse Models. Journal of Medicinal Chemistry, 2022, 65, 2785-2793.	6.4	92
2	The N-Terminal Region of Middle East Respiratory Syndrome Coronavirus Accessory Protein 8b Is Essential for Enhanced Virulence of an Attenuated Murine Coronavirus. Journal of Virology, 2022, 96, JVI0184221.	3.4	5
3	Two novel human coronavirus OC43 genotypes circulating in hospitalized children with pneumonia in China. Emerging Microbes and Infections, 2022, 11, 168-171.	6.5	13
4	Immune responses to human respiratory coronaviruses infection in mouse models. Current Opinion in Virology, 2022, 52, 102-111.	5.4	5
5	A novel STING agonist-adjuvanted pan-sarbecovirus vaccine elicits potent and durable neutralizing antibody and T cell responses in mice, rabbits and NHPs. Cell Research, 2022, 32, 269-287.	12.0	54
6	Plasma cell-free RNA characteristics in COVID-19 patients. Genome Research, 2022, 32, 228-241.	5.5	25
7	Inactivated Rabies Virus Vectored MERS-Coronavirus Vaccine Induces Protective Immunity in Mice, Camels, and Alpacas. Frontiers in Immunology, 2022, 13, 823949.	4.8	5
8	Ultrapotent neutralizing antibodies against SARS-CoV-2 with a high degree of mutation resistance. Journal of Clinical Investigation, 2022, 132 , .	8.2	14
9	Lung directed antibody gene transfer confers protection against SARS-CoV-2 infection. Thorax, 2022, 77, 1229-1236.	5.6	7
10	Neuropilinâ€1â€Mediated SARSâ€CoVâ€2 Infection in Bone Marrowâ€Derived Macrophages Inhibits Osteoclast Differentiation. Advanced Biology, 2022, 6, e2200007.	2.5	14
11	RBD trimer mRNA vaccine elicits broad and protective immune responses against SARS-CoV-2 variants. IScience, 2022, 25, 104043.	4.1	19
12	A comparison of Remdesivir versus gold cluster in COVID-19 animal model: A better therapeutic outcome of gold cluster. Nano Today, 2022, 44, 101468.	11.9	15
13	Angiotensin-converting enzyme 2 in peripheral lung club cells modulates the susceptibility to SARS-CoV-2 in chronic obstructive pulmonary disease. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2022, 322, L712-L721.	2.9	8
14	Novel sarbecovirus bispecific neutralizing antibodies with exceptional breadth and potency against currently circulating SARS-CoV-2 variants and sarbecoviruses. Cell Discovery, 2022, 8, 36.	6.7	22
15	Aptamer blocking S-TLR4 interaction selectively inhibits SARS-CoV-2 induced inflammation. Signal Transduction and Targeted Therapy, 2022, 7, 120.	17.1	19
16	Combinational benefit of antihistamines and remdesivir for reducing SARS-CoV-2 replication and alleviating inflammation-induced lung injury in mice. Zoological Research, 2022, 43, 457-468.	2.1	3
17	Intranasal Lentiviral Vector-Mediated Antibody Delivery Confers Reduction of SARS-CoV-2 Infection in Elderly and Immunocompromised Mice. Frontiers in Immunology, 2022, 13, 819058.	4.8	1
18	Non-adjuvanted interferon-armed RBD protein nasal drops protect airway infection from SARS-CoV-2. Cell Discovery, 2022, 8, 43.	6.7	5

#	Article	IF	CITATIONS
19	Quadrivalent mosaic HexaPro-bearing nanoparticle vaccine protects against infection of SARS-CoV-2 variants. Nature Communications, 2022, 13, 2674.	12.8	26
20	The adenosine analog prodrug ATV006 is orally bioavailable and has preclinical efficacy against parental SARS-CoV-2 and variants. Science Translational Medicine, 2022, 14, eabm7621.	12.4	22
21	Potential drug discovery for COVID-19 treatment targeting Cathepsin L using a deep learning-based strategy. Computational and Structural Biotechnology Journal, 2022, 20, 2442-2454.	4.1	13
22	mRNA based vaccines provide broad protection against different SARS-CoV-2 variants of concern. Emerging Microbes and Infections, 2022, 11, 1550-1553.	6.5	9
23	Safety and superior immunogenicity of heterologous boosting with an RBD-based SARS-CoV-2 mRNA vaccine in Chinese adults. Cell Research, 2022, 32, 777-780.	12.0	12
24	A broadly neutralizing antibody against SARS-CoV-2 Omicron variant infection exhibiting a novel trimer dimer conformation in spike protein binding. Cell Research, 2022, 32, 862-865.	12.0	8
25	A Confirmed Case of SARS-CoV-2 Pneumonia With Negative Routine Reverse Transcriptase–Polymerase Chain Reaction and Virus Variation in Guangzhou, China. Clinical Infectious Diseases, 2021, 73, e426-e433.	5.8	9
26	Elevated MUC1 and MUC5AC mucin protein levels in airway mucus of critical ill COVIDâ€19 patients. Journal of Medical Virology, 2021, 93, 582-584.	5.0	88
27	T-cell responses to MERS coronavirus infection in people with occupational exposure to dromedary camels in Nigeria: an observational cohort study. Lancet Infectious Diseases, The, 2021, 21, 385-395.	9.1	50
28	Effect of Recombinant Human Granulocyte Colony–Stimulating Factor for Patients With Coronavirus Disease 2019 (COVID-19) and Lymphopenia. JAMA Internal Medicine, 2021, 181, 71.	5.1	61
29	Human postâ€infection serological response to the spike and nucleocapsid proteins of SARSâ€CoVâ€2. Influenza and Other Respiratory Viruses, 2021, 15, 7-12.	3.4	4
30	The New Foe and Old Friends: Are We Ready for Microbiota-Based Therapeutics in Treating COVID-19 Patients?. Gastroenterology, 2021, 160, 2192-2193.	1.3	4
31	Evaluating angiotensin-converting enzyme 2-mediated SARS-CoV-2 entry across species. Journal of Biological Chemistry, 2021, 296, 100435.	3.4	30
32	Rapid Development of SARS-CoV-2 Spike Protein Receptor-Binding Domain Self-Assembled Nanoparticle Vaccine Candidates. ACS Nano, 2021, 15, 2738-2752.	14.6	143
33	Mapping and role of T cell response in SARS-CoV-2–infected mice. Journal of Experimental Medicine, 2021, 218, .	8.5	132
34	Therapeutic potential of C1632 by inhibition of SARS-CoV-2 replication and viral-induced inflammation through upregulating let-7. Signal Transduction and Targeted Therapy, 2021, 6, 84.	17.1	21
35	Population Bottlenecks and Intra-host Evolution During Human-to-Human Transmission of SARS-CoV-2. Frontiers in Medicine, 2021, 8, 585358.	2.6	28
36	Multiplexed analysis of circulating IgA antibodies for SARSâ€CoVâ€2 and common respiratory pathogens in COVIDâ€19 patients. Journal of Medical Virology, 2021, 93, 3257-3260.	5.0	4

#	Article	IF	CITATIONS
37	Development of a Broadly Applicable Cas12a-Linked Beam Unlocking Reaction for Sensitive and Specific Detection of Respiratory Pathogens Including SARS-CoV-2. ACS Chemical Biology, 2021, 16, 491-500.	3.4	12
38	Analysis of pathological changes in the epithelium in COVID-19 patient airways. ERJ Open Research, 2021, 7, 00690-2020.	2.6	16
39	Intra-host variation and evolutionary dynamics of SARS-CoV-2 populations in COVID-19 patients. Genome Medicine, 2021, 13, 30.	8.2	88
40	Immune responses to SARS-CoV-2 infection in Humans and ACE2 humanized mice. Fundamental Research, 2021, 1, 124-130.	3.3	5
41	The proteomic characteristics of airway mucus from critical ill COVID-19 patients. Life Sciences, 2021, 269, 119046.	4.3	7
42	Longitudinal virological changes and underlying pathogenesis in hospitalized COVID-19 patients in Guangzhou, China. Science China Life Sciences, 2021, 64, 2129-2143.	4.9	3
43	Multi-platform omics analysis reveals molecular signature for COVID-19 pathogenesis, prognosis and drug target discovery. Signal Transduction and Targeted Therapy, 2021, 6, 155.	17.1	49
44	Characterization of respiratory microbial dysbiosis in hospitalized COVID-19 patients. Cell Discovery, 2021, 7, 23.	6.7	34
45	COVID-19 immune features revealed by a large-scale single-cell transcriptome atlas. Cell, 2021, 184, 1895-1913.e19.	28.9	512
46	RNA-induced liquid phase separation of SARS-CoV-2 nucleocapsid protein facilitates NF-κB hyper-activation and inflammation. Signal Transduction and Targeted Therapy, 2021, 6, 167.	17.1	87
47	Gut microbiome and resistome changes during the first wave of the COVID-19 pandemic in comparison with pre-pandemic travel-related changes. Journal of Travel Medicine, 2021, 28, .	3.0	14
48	Dynamics of neutralizing antibody responses to SARS-CoV-2 in patients with COVID-19: an observational study. Signal Transduction and Targeted Therapy, 2021, 6, 197.	17.1	22
49	Longevity of Middle East Respiratory Syndrome Coronavirus Antibody Responses in Humans, Saudi Arabia. Emerging Infectious Diseases, 2021, 27, .	4.3	10
50	A core-shell structured COVID-19 mRNA vaccine with favorable biodistribution pattern and promising immunity. Signal Transduction and Targeted Therapy, 2021, 6, 213.	17.1	76
51	Phenotypic and genetic characterization of MERS coronaviruses from Africa to understand their zoonotic potential. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	20
52	Interferon-armed RBD dimer enhances the immunogenicity of RBD for sterilizing immunity against SARS-CoV-2. Cell Research, 2021, 31, 1011-1023.	12.0	48
53	Genetic and pathogenicity diversity of dengue virus type 2 strains circulating in Guangdong, China. Biosafety and Health, 2021, 3, 333-342.	2.7	7
54	The strand-biased transcription of SARS-CoV-2 and unbalanced inhibition by remdesivir. IScience, 2021, 24, 102857.	4.1	11

#	Article	IF	Citations
55	Detection of Anti-SARS-CoV-2-S2 lgG Is More Sensitive Than Anti-RBD lgG in Identifying Asymptomatic COVID-19 Patients. Frontiers in Immunology, 2021, 12, 724763.	4.8	14
56	Potent prophylactic and therapeutic efficacy of recombinant human ACE2-Fc against SARS-CoV-2 infection in vivo. Cell Discovery, 2021, 7, 65.	6.7	51
57	Antibody neutralization of SARS-CoV-2 through ACE2 receptor mimicry. Nature Communications, 2021, 12, 250.	12.8	108
58	SARS-CoV-2-triggered mast cell rapid degranulation induces alveolar epithelial inflammation and lung injury. Signal Transduction and Targeted Therapy, 2021, 6, 428.	17.1	44
59	The pre-existing cellular immunity to Japanese encephalitis virus heterotypically protects mice from Zika virus infection. Science Bulletin, 2020, 65, 402-409.	9.0	9
60	Japanese Encephalitis Virus Vaccination Elicits Cross-Reactive HLA-Class I-Restricted CD8 T Cell Response Against Zika Virus Infection. Frontiers in Immunology, 2020, 11, 577546.	4.8	6
61	Main protease of SARS-CoV-2 serves as a bifunctional molecule in restricting type I interferon antiviral signaling. Signal Transduction and Targeted Therapy, 2020, 5, 221.	17.1	7 5
62	Single-cell analysis reveals bronchoalveolar epithelial dysfunction in COVID-19 patients. Protein and Cell, 2020, 11, 680-687.	11.0	75
63	Infectious SARS-CoV-2 in Feces of Patient with Severe COVID-19. Emerging Infectious Diseases, 2020, 26, 1920-1922.	4.3	443
64	Morphogenesis and cytopathic effect of SARS-CoV-2 infection in human airway epithelial cells. Nature Communications, 2020, 11, 3910.	12.8	271
65	Human neutralizing antibodies elicited by SARS-CoV-2 infection. Nature, 2020, 584, 115-119.	27.8	1,524
66	An adenovirus-vectored COVID-19 vaccine confers protection from SARS-COV-2 challenge in rhesus macaques. Nature Communications, 2020, 11, 4207.	12.8	194
67	Sensitization of Non-permissive Laboratory Mice to SARS-CoV-2 with a Replication-Deficient Adenovirus Expressing Human ACE2. STAR Protocols, 2020, 1, 100169.	1.2	20
68	Cross-reactive Antibody Response between SARS-CoV-2 and SARS-CoV Infections. Cell Reports, 2020, 31, 107725.	6.4	353
69	Distinct features of SARS-CoV-2-specific IgA response in COVID-19 patients. European Respiratory Journal, 2020, 56, 2001526.	6.7	292
70	Increased Pathogenicity and Virulence of Middle East Respiratory Syndrome Coronavirus Clade B <i>In Vitro</i> and <i>In Vivo</i> Journal of Virology, 2020, 94, .	3.4	2
71	Clinical characteristics of COVID-19 infection in chronic obstructive pulmonary disease: a multicenter, retrospective, observational study. Journal of Thoracic Disease, 2020, 12, 1811-1823.	1.4	60
72	Generation of a Broadly Useful Model for COVID-19 Pathogenesis, Vaccination, and Treatment. Cell, 2020, 182, 734-743.e5.	28.9	398

#	Article	IF	Citations
73	COVID-19 Severity Correlates with Weaker T-Cell Immunity, Hypercytokinemia, and Lung Epithelium Injury. American Journal of Respiratory and Critical Care Medicine, 2020, 202, 606-610.	5.6	35
74	Multiple approaches for massively parallel sequencing of SARS-CoV-2 genomes directly from clinical samples. Genome Medicine, 2020, 12, 57.	8.2	104
75	Isolation of infectious SARS-CoV-2 from urine of a COVID-19 patient. Emerging Microbes and Infections, 2020, 9, 991-993.	6.5	276
76	Potential therapeutic effects of dipyridamole in the severely ill patients with COVID-19. Acta Pharmaceutica Sinica B, 2020, 10, 1205-1215.	12.0	193
77	Complete Genome Sequences of Five Human Coronavirus NL63 Strains Causing Respiratory Illness in Hospitalized Children in China. Microbiology Resource Announcements, 2020, 9, .	0.6	3
78	Discovery of a subgenotype of human coronavirus NL63 associated with severe lower respiratory tract infection in China, 2018. Emerging Microbes and Infections, 2020, 9, 246-255.	6.5	46
79	Kinetics of viral load and antibody response in relation to COVID-19 severity. Journal of Clinical Investigation, 2020, 130, 5235-5244.	8.2	501
80	Narrative review of the novel coronavirus SARS-CoV-2: update on genomic characteristics, transmissions and animal model. Journal of Thoracic Disease, 2020, 12, 7454-7466.	1.4	1
81	The clinical significance of myeloid-derived suppressor cells in dengue fever patients. BMC Infectious Diseases, 2019, 19, 926.	2.9	11
82	Single intranasal immunization with chimpanzee adenovirus-based vaccine induces sustained and protective immunity against MERS-CoV infection. Emerging Microbes and Infections, 2019, 8, 760-772.	6.5	36
83	A novel luciferase immunosorbent assay performs better than a commercial enzyme-linked immunosorbent assay to detect MERS-CoV specific IgG in humans and animals. Biosafety and Health, 2019, 1, 134-143.	2.7	8
84	MERS coronaviruses from camels in Africa exhibit region-dependent genetic diversity. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 3144-3149.	7.1	142
85	Current understanding of middle east respiratory syndrome coronavirus infection in human and animal models. Journal of Thoracic Disease, 2018, 10, S2260-S2271.	1.4	24
86	High Prevalence of MERS-CoV Infection in Camel Workers in Saudi Arabia. MBio, 2018, 9, .	4.1	97
87	A Rapid and Specific Assay for the Detection of MERS-CoV. Frontiers in Microbiology, 2018, 9, 1101.	3.5	135
88	Protective T Cell Responses Featured by Concordant Recognition of Middle East Respiratory Syndrome Coronavirus–Derived CD8+ T Cell Epitopes and Host MHC. Journal of Immunology, 2017, 198, 873-882.	0.8	42
89	Passive immunotherapy for Middle East Respiratory Syndrome coronavirus infection with equine immunoglobulin or immunoglobulin fragments in a mouse model. Antiviral Research, 2017, 137, 125-130.	4.1	28
90	Discovery of a novel canine respiratory coronavirus support genetic recombination among betacoronavirus 1. Virus Research, 2017, 237, 7-13.	2.2	29

#	Article	IF	Citations
91	DNA vaccine encoding Middle East respiratory syndrome coronavirus S1 protein induces protective immune responses in mice. Vaccine, 2017, 35, 2069-2075.	3.8	53
92	Recovery from the Middle East respiratory syndrome is associated with antibody and T cell responses. Science Immunology, 2017, 2, .	11.9	252
93	Simultaneous Intranasal/Intravascular Antibody Labeling of CD4+ T Cells in Mouse Lungs. Bio-protocol, 2017, 7, .	0.4	2
94	Equine Immunoglobulin and Equine Neutralizing F(ab′)2 Protect Mice from West Nile Virus Infection. Viruses, 2016, 8, 332.	3.3	5
95	The Conserved Coronavirus Macrodomain Promotes Virulence and Suppresses the Innate Immune Response during Severe Acute Respiratory Syndrome Coronavirus Infection. MBio, 2016, 7, .	4.1	198
96	MAVS Expressed by Hematopoietic Cells Is Critical for Control of West Nile Virus Infection and Pathogenesis. Journal of Virology, 2016, 90, 7098-7108.	3.4	23
97	Airway Memory CD4 + T Cells Mediate Protective Immunity against Emerging Respiratory Coronaviruses. Immunity, 2016, 44, 1379-1391.	14.3	468
98	Human polyclonal immunoglobulin G from transchromosomic bovines inhibits MERS-CoV in vivo. Science Translational Medicine, 2016, 8, 326ra21.	12.4	102
99	Dysregulated Type I Interferon and Inflammatory Monocyte-Macrophage Responses Cause Lethal Pneumonia in SARS-CoV-Infected Mice. Cell Host and Microbe, 2016, 19, 181-193.	11.0	1,284
100	Middle East Respiratory Syndrome Coronavirus Causes Multiple Organ Damage and Lethal Disease in Mice Transgenic for Human Dipeptidyl Peptidase 4. Journal of Infectious Diseases, 2016, 213, 712-722.	4.0	375
101	Characteristics of Traveler with Middle East Respiratory Syndrome, China, 2015. Emerging Infectious Diseases, 2015, 21, 2278-2280.	4.3	37
102	Passive Immunotherapy with Dromedary Immune Serum in an Experimental Animal Model for Middle East Respiratory Syndrome Coronavirus Infection. Journal of Virology, 2015, 89, 6117-6120.	3.4	64
103	A humanized neutralizing antibody against MERS-CoV targeting the receptor-binding domain of the spike protein. Cell Research, 2015, 25, 1237-1249.	12.0	137
104	Prophylactic and postexposure efficacy of a potent human monoclonal antibody against MERS coronavirus. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 10473-10478.	7.1	198
105	Virus-Specific Regulatory T Cells Ameliorate Encephalitis by Repressing Effector T Cell Functions from Priming to Effector Stages. PLoS Pathogens, 2014, 10, e1004279.	4.7	33
106	Virus-Specific Memory CD8 T Cells Provide Substantial Protection from Lethal Severe Acute Respiratory Syndrome Coronavirus Infection. Journal of Virology, 2014, 88, 11034-11044.	3.4	407
107	Structural Basis for the Identification of the N-Terminal Domain of Coronavirus Nucleocapsid Protein as an Antiviral Target. Journal of Medicinal Chemistry, 2014, 57, 2247-2257.	6.4	113
108	Receptor Variation and Susceptibility to Middle East Respiratory Syndrome Coronavirus Infection. Journal of Virology, 2014, 88, 4953-4961.	3.4	101

#	Article	IF	CITATIONS
109	Rapid generation of a mouse model for Middle East respiratory syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 4970-4975.	7.1	399
110	T cell-mediated immune response to respiratory coronaviruses. Immunologic Research, 2014, 59, 118-128.	2.9	448
111	Measurement of CD8 and CD4 T Cell Responses in Mouse Lungs. Bio-protocol, 2014, 4, .	0.4	3
112	Virus Infection and Titration of SARS-CoV in Mouse Lung. Bio-protocol, 2014, 4, .	0.4	2
113	Crystal structure-based exploration of the important role of Arg106 in the RNA-binding domain of human coronavirus OC43 nucleocapsid protein. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2013, 1834, 1054-1062.	2.3	43
114	Development of transgenic mice expressing a coronavirus-specific public CD4 T cell receptor. Journal of Immunological Methods, 2013, 396, 56-64.	1.4	3
115	Human Coronavirus EMC Is Not the Same as Severe Acute Respiratory Syndrome Coronavirus. MBio, 2013, 4, .	4.1	20
116	Intranasal Treatment with Poly(I·C) Protects Aged Mice from Lethal Respiratory Virus Infections. Journal of Virology, 2012, 86, 11416-11424.	3.4	113
117	Differential Effects of IL-12 on Tregs and Non-Treg T Cells: Roles of IFN-γ, IL-2 and IL-2R. PLoS ONE, 2012, 7, e46241.	2.5	82
118	A Transmembrane Serine Protease Is Linked to the Severe Acute Respiratory Syndrome Coronavirus Receptor and Activates Virus Entry. Journal of Virology, 2011, 85, 873-882.	3.4	611
119	IFN-γ– and IL-10–expressing virus epitope-specific Foxp3+ T reg cells in the central nervous system during encephalomyelitis. Journal of Experimental Medicine, 2011, 208, 1571-1577.	8.5	88
120	Severe Acute Respiratory Syndrome Coronavirus Envelope Protein Regulates Cell Stress Response and Apoptosis. PLoS Pathogens, 2011, 7, e1002315.	4.7	173
121	Age-related increases in PGD2 expression impair respiratory DC migration, resulting in diminished T cell responses upon respiratory virus infection in mice. Journal of Clinical Investigation, 2011, 121, 4921-4930.	8.2	228
122	Immunization with an attenuated severe acute respiratory syndrome coronavirus deleted in E protein protects against lethal respiratory disease. Virology, 2010, 399, 120-128.	2.4	127
123	The N-Terminal Region of Severe Acute Respiratory Syndrome Coronavirus Protein 6 Induces Membrane Rearrangement and Enhances Virus Replication. Journal of Virology, 2010, 84, 3542-3551.	3.4	36
124	T Cell Responses Are Required for Protection from Clinical Disease and for Virus Clearance in Severe Acute Respiratory Syndrome Coronavirus-Infected Mice. Journal of Virology, 2010, 84, 9318-9325.	3.4	344
125	Autocrine Interferon Priming in Macrophages but Not Dendritic Cells Results in Enhanced Cytokine and Chemokine Production after Coronavirus Infection. MBio, 2010, 1, .	4.1	34
126	Severe Acute Respiratory Syndrome Coronavirus Protein 6 Is Required for Optimal Replication. Journal of Virology, 2009, 83, 2368-2373.	3.4	49

#	Article	IF	CITATION
127	Evasion by Stealth: Inefficient Immune Activation Underlies Poor T Cell Response and Severe Disease in SARS-CoV-Infected Mice. PLoS Pathogens, 2009, 5, e1000636.	4.7	140
128	De Novo Recruitment of Antigen-Experienced and Naive T Cells Contributes to the Long-Term Maintenance of Antiviral T Cell Populations in the Persistently Infected Central Nervous System. Journal of Immunology, 2009, 183, 5163-5170.	0.8	23
129	Comparison of Immunoglobulin G Responses to the Spike and Nucleocapsid Proteins of Severe Acute Respiratory Syndrome (SARS) Coronavirus in Patients with SARS. Vaccine Journal, 2007, 14, 839-846.	3.1	23
130	Identification and Characterization of Dominant Helper T-Cell Epitopes in the Nucleocapsid Protein of Severe Acute Respiratory Syndrome Coronavirus. Journal of Virology, 2007, 81, 6079-6088.	3.4	39
131	A study on antigenicity and receptor-binding ability of fragment 450–650 of the spike protein of SARS coronavirus. Virology, 2007, 359, 362-370.	2.4	15
132	Development and evaluation of an enzyme-linked immunosorbent assay for detection of antibodies against the spike protein of SARS-coronavirus. Journal of Clinical Virology, 2005, 33, 12-18.	3.1	12
133	Prokaryotic expression, refolding, and purification of fragment 450–650 of the spike protein of SARS-coronavirus. Protein Expression and Purification, 2005, 39, 169-174.	1.3	25
134	Single Extracellular Vesicles (EV) Proteomic Profiling Altered and Identifies Co-Localization of SARS-CoV-2 Nucleocapsid Protein with CD81/Integrin-Rich EV Subpopulation in Sputum Samples of COVID-19 Patients. SSRN Electronic Journal, 0, , .	0.4	0