
## Katharina Schindowski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8384771/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Editorial: Intranasal Drug Delivery: Challenges and Opportunities. Frontiers in Pharmacology, 2022, 13, 868986.                                                                                                                                    | 3.5 | 7         |
| 2  | Hyaluronate Spreading Validates Mucin-Agarose Analogs as Test Systems to Replace Porcine Nasal<br>Mucosa Explants – an Experimental and Theoretical Investigation. Colloids and Surfaces B:<br>Biointerfaces, 2022, , 112689.                      | 5.0 | 0         |
| 3  | Nano-in-Micro-Particles Consisting of PLGA Nanoparticles Embedded in Chitosan Microparticles via<br>Spray-Drying Enhances Their Uptake in the Olfactory Mucosa. Frontiers in Pharmacology, 2021, 12,<br>732954.                                    | 3.5 | 13        |
| 4  | Central Nervous System Delivery of Antibodies and Their Single-Domain Antibodies and Variable<br>Fragment Derivatives with Focus on Intranasal Nose to Brain Administration. Antibodies, 2021, 10, 47.                                             | 2.5 | 8         |
| 5  | Selective CNS Targeting and Distribution with a Refined Region-Specific Intranasal Delivery Technique via the Olfactory Mucosa. Pharmaceutics, 2021, 13, 1904.                                                                                     | 4.5 | 16        |
| 6  | Establishment of an Olfactory Region-specific Intranasal Delivery Technique in Mice to Target the Central Nervous System. Frontiers in Pharmacology, 2021, 12, 789780.                                                                             | 3.5 | 9         |
| 7  | Impact of Glycosylation and Species Origin on the Uptake and Permeation of IgGs through the Nasal<br>Airway Mucosa. Pharmaceutics, 2020, 12, 1014.                                                                                                 | 4.5 | 12        |
| 8  | Improved In Vitro Model for Intranasal Mucosal Drug Delivery: Primary Olfactory and Respiratory<br>Epithelial Cells Compared with the Permanent Nasal Cell Line RPMI 2650. Pharmaceutics, 2019, 11, 367.                                           | 4.5 | 43        |
| 9  | Efficient Construction and Effective Screening of Synthetic Domain Antibody Libraries. Methods and Protocols, 2019, 2, 17.                                                                                                                         | 2.0 | 12        |
| 10 | Allogenic Fc Domain-Facilitated Uptake of IgG in Nasal Lamina Propria: Friend or Foe for Intranasal<br>CNS Delivery?. Pharmaceutics, 2018, 10, 107.                                                                                                | 4.5 | 21        |
| 11 | Tailoring Formulations for Intranasal Nose-to-Brain Delivery: A Review on Architecture,<br>Physico-Chemical Characteristics and Mucociliary Clearance of the Nasal Olfactory Mucosa.<br>Pharmaceutics, 2018, 10, 116.                              | 4.5 | 242       |
| 12 | Regulation of Neurotrophic Factors During Pathogenic Tau-Aggregation: A Detailed Protocol for<br>Double-Labeling mRNA by In Situ Hybridization and Protein Epitopes by Immunohistochemistry. Methods<br>in Molecular Biology, 2017, 1523, 391-414. | 0.9 | 1         |
| 13 | A comprehensive screening platform for aerosolizable protein formulations for intranasal and pulmonary drug delivery. International Journal of Pharmaceutics, 2017, 532, 537-546.                                                                  | 5.2 | 50        |
| 14 | Data of rational process optimization for the production of a full IgG and its Fab fragment from hybridoma cells. Data in Brief, 2016, 8, 426-435.                                                                                                 | 1.0 | 5         |
| 15 | First Steps to Develop and Validate a CFPD Model in Order to Support the Design of Nose-to-Brain<br>Delivered Biopharmaceuticals. Pharmaceutical Research, 2016, 33, 1337-1350.                                                                    | 3.5 | 21        |
| 16 | Protein aerosol for intranasal nose to brain (N2B) delivery. BMC Proceedings, 2015, 9, .                                                                                                                                                           | 1.6 | 2         |
| 17 | Nose-to-Brain delivery of insulin for Alzheimer's disease. ADMET and DMPK, 2015, 3, .                                                                                                                                                              | 2.1 | 23        |
| 18 | Intravenous immunoglobulin for the treatment of Alzheimer's disease: current evidence and considerations. Degenerative Neurological and Neuromuscular Disease, 2014, 4, 121.                                                                       | 1.3 | 1         |

| #  | Article                                                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Passive anti-amyloid immunotherapy in Alzheimer's disease: What are the most promising targets?.<br>Immunity and Ageing, 2013, 10, 18.                                                                                                                   | 4.2 | 97        |
| 20 | Optimized fermentation conditions for improved antibody yield in hybridoma cells. BMC Proceedings, 2013, 7, .                                                                                                                                            | 1.6 | 2         |
| 21 | ls abeta a sufficient biomarker for monitoring anti-abeta clinical studies? A critical review. Frontiers<br>in Aging Neuroscience, 2013, 5, 25.                                                                                                          | 3.4 | 12        |
| 22 | Loss of Medial Septum Cholinergic Neurons in THY-Tau22 Mouse Model: What Links with tau<br>Pathology?. Current Alzheimer Research, 2011, 8, 633-638.                                                                                                     | 1.4 | 38        |
| 23 | Regulation of GDF-15, a distant TGF-β superfamily member, in a mouse model of cerebral ischemia. Cell<br>and Tissue Research, 2011, 343, 399-409.                                                                                                        | 2.9 | 53        |
| 24 | Early Tau Pathology Involving the Septo-Hippocampal Pathway in a Tau Transgenic Model: Relevance to<br>Alzheimers Disease. Current Alzheimer Research, 2009, 6, 152-157.                                                                                 | 1.4 | 50        |
| 25 | Expression of trkB and trkC receptors and their ligands brainâ€derived neurotrophic factor and neurotrophinâ€3 in the murine amygdala. Journal of Neuroscience Research, 2008, 86, 411-421.                                                              | 2.9 | 20        |
| 26 | Neurogenesis and cell cycleâ€reactivated neuronal death during pathogenic tau aggregation. Genes,<br>Brain and Behavior, 2008, 7, 92-100.                                                                                                                | 2.2 | 48        |
| 27 | Neurotrophic factors in Alzheimer's disease: role of axonal transport. Genes, Brain and Behavior,<br>2008, 7, 43-56.                                                                                                                                     | 2.2 | 298       |
| 28 | Early Axonopathy Preceding Neurofibrillary Tangles in Mutant Tau Transgenic Mice. American Journal<br>of Pathology, 2007, 171, 976-992.                                                                                                                  | 3.8 | 122       |
| 29 | Increased T-cell Reactivity and Elevated Levels of CD8+ Memory T-cells in Alzheimer's Disease-patients<br>and T-cell Hyporeactivity in an Alzheimer's Disease-mouse Model: Implications for Immunotherapy.<br>NeuroMolecular Medicine, 2007, 9, 340-354. | 3.4 | 42        |
| 30 | Alzheimer's Disease-Like Tau Neuropathology Leads to Memory Deficits and Loss of Functional<br>Synapses in a Novel Mutated Tau Transgenic Mouse without Any Motor Deficits. American Journal of<br>Pathology, 2006, 169, 599-616.                        | 3.8 | 337       |
| 31 | Apoptosis of CD4+ T and Natural Killer Cells in Alzheimer's Disease. Pharmacopsychiatry, 2006, 39, 220-228.                                                                                                                                              | 3.3 | 41        |
| 32 | p25/Cdk5-mediated retinoblastoma phosphorylation is an early event in neuronal cell death. Journal of<br>Cell Science, 2005, 118, 1291-1298.                                                                                                             | 2.0 | 93        |
| 33 | Enhanced ROS-Generation in Lymphocytes from Alzheimer's Patients. Pharmacopsychiatry, 2005, 38,<br>312-315.                                                                                                                                              | 3.3 | 47        |
| 34 | Enlarged infarct volume and loss of BDNF mRNA induction following brain ischemia in mice lacking<br>FGF-2. Experimental Neurology, 2004, 189, 252-260.                                                                                                   | 4.1 | 45        |
| 35 | Impact of Aging: Sporadic, and Genetic Risk Factors on Vulnerability to Apoptosis in Alzheimer's<br>Disease. NeuroMolecular Medicine, 2003, 4, 161-178.                                                                                                  | 3.4 | 30        |
| 36 | Age-related impairment of human T lymphocytes' activation: specific differences between CD4+ and CD8+ subsets. Mechanisms of Ageing and Development, 2002, 123, 375-390.                                                                                 | 4.6 | 69        |

| #  | Article                                                                                                                                                                | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Alzheimer's Disease-like Alterations in Peripheral Cells from Presenilin-1 Transgenic Mice.<br>Neurobiology of Disease, 2001, 8, 331-342.                              | 4.4 | 55        |
| 38 | Age-related increase of oxidative stress-induced apoptosis in micePrevention by Ginkgo biloba extract<br>(EGb761). Journal of Neural Transmission, 2001, 108, 969-978. | 2.8 | 81        |
| 39 | Reduced antioxidant enzyme activity in brains of mice transgenic for human presenilin-1 with single or<br>multiple mutations. Neuroscience Letters, 2000, 292, 87-90.  | 2.1 | 59        |
| 40 | Age-related changes of apoptotic cell death in human lymphocytes. Neurobiology of Aging, 2000, 21,<br>661-670.                                                         | 3.1 | 66        |
| 41 | In vivo manipulation of interleukin-2 expression by a retroviral tetracycline (tet)-regulated system.<br>Cancer Gene Therapy, 1999, 6, 139-146.                        | 4.6 | 10        |