

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8384258/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Organometallic-functionalized interfaces for highly efficient inverted perovskite solar cells. Science, 2022, 376, 416-420.	12.6	527
2	A Vinyleneâ€Linkerâ€Based Polymer Acceptor Featuring a Coplanar and Rigid Molecular Conformation Enables Highâ€Performance Allâ€Polymer Solar Cells with Over 17% Efficiency. Advanced Materials, 2022, 34, e2200361.	21.0	131
3	Asymmetric Acceptors Enabling Organic Solar Cells to Achieve an over 17% Efficiency: Conformation Effects on Regulating Molecular Properties and Suppressing Nonradiative Energy Loss. Advanced Energy Materials, 2021, 11, 2003177.	19.5	114
4	Efficient Inverted Perovskite Solar Cells with Low Voltage Loss Achieved by a Pyridineâ€Based Dopantâ€Free Polymer Semiconductor. Angewandte Chemie - International Edition, 2021, 60, 7227-7233.	13.8	107
5	Allâ€Inorganic CsPbI ₃ Quantum Dot Solar Cells with Efficiency over 16% by Defect Control. Advanced Functional Materials, 2021, 31, 2005930.	14.9	101
6	Efficient and stable carbon-based perovskite solar cells enabled by the inorganic interface of CuSCN and carbon nanotubes. Journal of Materials Chemistry A, 2019, 7, 12236-12243.	10.3	91
7	Designs from single junctions, heterojunctions to multijunctions for high-performance perovskite solar cells. Chemical Society Reviews, 2021, 50, 13090-13128.	38.1	91
8	A Dopantâ€Free Polymeric Holeâ€Transporting Material Enabled High Fill Factor Over 81% for Highly Efficient Perovskite Solar Cells. Advanced Energy Materials, 2019, 9, 1902600.	19.5	89
9	Lowâ€Bandgap Organic Bulkâ€Heterojunction Enabled Efficient and Flexible Perovskite Solar Cells. Advanced Materials, 2021, 33, e2105539.	21.0	89
10	A Generally Applicable Approach Using Sequential Deposition to Enable Highly Efficient Organic Solar Cells. Small Methods, 2020, 4, 2000687.	8.6	86
11	Selenium-Containing Organic Photovoltaic Materials. Accounts of Chemical Research, 2021, 54, 3906-3916.	15.6	83
12	Modifying Surface Termination of CsPbl ₃ Grain Boundaries by 2D Perovskite Layer for Efficient and Stable Photovoltaics. Advanced Functional Materials, 2021, 31, 2009515.	14.9	62
13	Interface functionalization in inverted perovskite solar cells: From material perspective. , 2022, 1, e9120011.		53
14	Dopantâ€Free Holeâ€Transporting Material with Enhanced Intermolecular Interaction for Efficient and Stable nâ€iâ€p Perovskite Solar Cells. Advanced Energy Materials, 2021, 11, 2100967.	19.5	51
15	Improved stability and efficiency of perovskite/organic tandem solar cells with an all-inorganic perovskite layer. Journal of Materials Chemistry A, 2021, 9, 19778-19787.	10.3	50
16	An effective and economical encapsulation method for trapping lead leakage in rigid and flexible perovskite photovoltaics. Nano Energy, 2022, 93, 106853.	16.0	49
17	Efficient and Stable Tin Perovskite Solar Cells by Pyridineâ€Functionalized Fullerene with Reduced Interfacial Energy Loss. Advanced Functional Materials, 2022, 32, .	14.9	49
18	Sulfonated Graphene Aerogels Enable Safeâ€toâ€Use Flexible Perovskite Solar Modules. Advanced Energy Materials, 2022, 12, .	19.5	46

Xin Wu

#	Article	IF	CITATIONS
19	Efficient and stable Cs2AgBiBr6 double perovskite solar cells through in-situ surface modulation. Chemical Engineering Journal, 2022, 446, 137144.	12.7	45
20	Interfacial Engineering of Wideâ€Bandgap Perovskites for Efficient Perovskite/CZTSSe Tandem Solar Cells. Advanced Functional Materials, 2022, 32, 2107359.	14.9	43
21	Interfacial Modification through a Multifunctional Molecule for Inorganic Perovskite Solar Cells with over 18% Efficiency. Solar Rrl, 2020, 4, 2000205.	5.8	38
22	Regulating the Aggregation of Unfused Nonâ€Fullerene Acceptors via Molecular Engineering towards Efficient Polymer Solar Cells. ChemSusChem, 2021, 14, 3579-3589.	6.8	28
23	Synergy of CO ₂ Response and Aggregation-Induced Emission in a Block Copolymer: A Facile Way To "See―Cancer Cells. ACS Applied Materials & Interfaces, 2019, 11, 37077-37083.	8.0	23
24	Lowâ€Temperature Processed Carbon Electrodeâ€Based Inorganic Perovskite Solar Cells with Enhanced Photovoltaic Performance and Stability. Energy and Environmental Materials, 2021, 4, 95-102.	12.8	23
25	Efficient Inverted Perovskite Solar Cells with Low Voltage Loss Achieved by a Pyridineâ€Based Dopantâ€Free Polymer Semiconductor. Angewandte Chemie, 2021, 133, 7303-7309.	2.0	18
26	Interface Engineering for Allâ€Inorganic CsPbIBr ₂ Perovskite Solar Cells with Enhanced Power Conversion Efficiency over 11%. Energy Technology, 2021, 9, 2100562.	3.8	18