Takunori Taira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8384096/publications.pdf

Version: 2024-02-01

371 papers

7,686 citations

47 h-index

47006

79 g-index

372 all docs

 $\begin{array}{c} 372 \\ \text{docs citations} \end{array}$

372 times ranked

2699 citing authors

#	Article	IF	CITATIONS
1	PROGRESS IN CERAMIC LASERS. Annual Review of Materials Research, 2006, 36, 397-429.	9.3	288
2	Single-mode oscillation of laser-diode-pumped Nd:YVO_4 microchip lasers. Optics Letters, 1991, 16, 1955.	3.3	207
3	>1 MW peak power single-mode high-brightness passively Q-switched Nd^3+:YAG microchip laser. Optics Express, 2008, 16, 19891.	3.4	197
4	Ultrabright continuously tunable terahertz-wave generation at room temperature. Scientific Reports, 2014, 4, 5045.	3.3	185
5	Optical properties and laser characteristics of highly Nd[sup 3+]-doped Y[sub 3]Al[sub 5]O[sub 12] ceramics. Applied Physics Letters, 2000, 77, 939.	3.3	178
6	Composite, all-ceramics, high-peak power Nd:YAG/Cr^4+:YAG monolithic micro-laser with multiple-beam output for engine ignition. Optics Express, 2011, 19, 9378.	3.4	174
7	The studies of thermal conductivity in GdVO4, YVO4, and Y3Al5O12measured by quasi-one-dimensional flash method. Optics Express, 2006, 14, 10528.	3.4	166
8	Laser operation with near quantum-defect slope efficiency in Nd:YVO4 under direct pumping into the emitting level. Applied Physics Letters, 2003, 82, 844-846.	3.3	165
9	Modeling of quasi-three-level lasers and operation of cw Yb:YAG lasers. Applied Optics, 1997, 36, 1867.	2.1	163
10	Carrier-envelope-phase-stable, 12ÂmJ, 15 cycle laser pulses at 21Âμm. Optics Letters, 2012, 37, 4973.	3.3	150
11	High Peak Power, Passively \$Q\$-switched Microlaser for Ignition of Engines. IEEE Journal of Quantum Electronics, 2010, 46, 277-284.	1.9	147
12	Highly efficient 1063-nm continuous-wave laser emission in Nd:GdVO_4. Optics Letters, 2003, 28, 2366.	3.3	141
13	High-energy quasi-phase-matched optical parametric oscillation in a periodically poled MgO:LiNbO_3 device with a 5?mm×5?mm aperture. Optics Letters, 2005, 30, 2918.	3.3	132
14	Periodical poling characteristics of congruent MgO:LiNbO3 crystals at elevated temperature. Applied Physics Letters, 2003, 82, 4062-4064.	3.3	129
15	Broadband quasi-phase-matched second-harmonic generation in MgO-doped periodically poled LiNbO_3 at the communications band. Optics Letters, 2002, 27, 1046.	3.3	127
16	Generation of carrier-envelope-phase-stable 2-cycle 740-μJ pulses at 21-μm carrier wavelength. Optics Express, 2009, 17, 62.	3.4	126
17	RE\$^{3 +}\$-lon-Doped YAG Ceramic Lasers. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13, 798-809.	2.9	123
18	Laser emission under resonant pump in the emitting level of concentrated Nd:YAG ceramics. Applied Physics Letters, 2001, 79, 590-592.	3.3	107

#	Article	IF	Citations
19	Diode-pumped tunable Yb:YAG miniature lasers at room temperature: modeling and experiment. IEEE Journal of Selected Topics in Quantum Electronics, 1997, 3, 100-104.	2.9	101
20	Comparative study on the spectroscopic properties of Nd:GdVO/sub 4/ and Nd:YVO/sub 4/ with hybrid process. IEEE Journal of Selected Topics in Quantum Electronics, 2005, 11, 613-620.	2.9	100
21	Domain-controlled laser ceramics toward Giant Micro-photonics [Invited]. Optical Materials Express, 2011, 1, 1040.	3.0	99
22	Spectral phase control of interfering chirped pulses for high-energy narrowband terahertz generation. Nature Communications, 2019, 10, 2591.	12.8	96
23	High Average Power Diode End-Pumped Composite Nd:YAG Laser Passively Q-switched by Cr4+:YAG Saturable Absorber. Japanese Journal of Applied Physics, 2001, 40, 1253-1259.	1.5	95
24	Thermal-birefringence-induced depolarization in Nd:YAG ceramics. Optics Letters, 2002, 27, 234.	3.3	92
25	> 6 MW peak power at 532 nm from passively Q-switched Nd:YAG/Cr^4+:YAG microchip laser. Optics Express, 2011, 19, 19135.	3.4	92
26	High-power operation of diode edge-pumped, composite all-ceramic Yb:Y3Al5O12 microchip laser. Applied Physics Letters, 2007, 90, 121101.	3.3	89
27	High-power blue generation from a periodically poled MgO:LiNbO3 ridge-type waveguide by frequency doubling of a diode end-pumped Nd:Y3Al5O12 laser. Applied Physics Letters, 2003, 83, 3659-3661.	3.3	84
28	High-power, single-longitudinal-mode terahertz-wave generation pumped by a microchip Nd:YAG laser [Invited]. Optics Express, 2012, 20, 2881.	3.4	82
29	Kilowatt-peak Terahertz-wave Generation and Sub-femtojoule Terahertz-wave Pulse Detection Based on Nonlinear Optical Wavelength-conversion at Room Temperature. Journal of Infrared, Millimeter, and Terahertz Waves, 2014, 35, 25-37.	2.2	79
30	Highly efficient continuous-wave 946-nm Nd:YAG laser emission under direct 885-nm pumping. Applied Physics Letters, 2002, 81, 2677-2679.	3.3	77
31	Half-joule output optical-parametric oscillation†by using 10-mm-thick periodically poled†Mg-doped congruent LiNbO_3. Optics Express, 2012, 20, 20002.	3.4	77
32	1064 nm laser emission of highly doped Nd: Yttrium aluminum garnet under 885 nm diode laser pumping. Applied Physics Letters, 2002, 80, 4309-4311.	3.3	72
33	Absorption, emission spectrum properties, and efficient laser performances of Yb:Y3ScAl4O12 ceramics. Applied Physics Letters, 2004, 85, 1898-1900.	3.3	70
34	$1.34 \cdot \hat{l}$ 4m efficient laser emission in highly-doped Nd:YAG under 885-nm diode pumping. Optics Express, 2005, 13, 7948.	3.4	70
35	Temperature dependencies of stimulated emission cross section for Nd-doped solid-state laser materials. Optical Materials Express, 2012, 2, 1076.	3.0	70
36	Ceramic YAG lasers. Comptes Rendus Physique, 2007, 8, 138-152.	0.9	67

3

#	Article	IF	CITATIONS
37	Laser emission in highly doped Nd:YAG crystals under ^4F_5/2 and ^4F_3/2 pumping. Optics Letters, 2001, 26, 1678.	3.3	65
38	Laser ceramics with rare-earth-doped anisotropic materials. Optics Letters, 2010, 35, 3598.	3.3	64
39	Intrinsic reduction of the depolarization loss in solid-state lasers by use of a (110)-cut Y3Al5O12 crystal. Applied Physics Letters, 2002, 80, 3048-3050.	3.3	61
40	Neodymium concentration dependence of 0.94-, 1.06- and 1.34- \hat{l} /4m laser emission and of heating effects under 809- and 885-nm diode laser pumping of Nd:YAG. Applied Physics B: Lasers and Optics, 2006, 82, 599-605.	2,2	61
41	300 W continuous-wave operation of a diode edge-pumped, hybrid composite Yb:YAG microchip laser. Optics Letters, 2006, 31, 2003.	3.3	59
42	High-energy, narrow-bandwidth periodically poled Mg-doped LiNbO_3 optical parametric oscillator with a volume Bragg grating. Optics Letters, 2007, 32, 2996.	3.3	55
43	Narrowband terahertz generation with chirped-and-delayed laser pulses in periodically poled lithium niobate. Optics Letters, 2017, 42, 2118.	3.3	55
44	Tunable frequency-doubled Yb:YAG microchip lasers. Optical Materials, 2002, 19, 169-174.	3.6	54
45	Room-temperature, continuous-wave 1-W green power by single-pass frequency doubling in a bulk periodically poled MgO:LiNbO_3 crystal. Optics Letters, 2004, 29, 830.	3.3	52
46	Effects of rare-earth doping on thermal conductivity in Y3Al5O12 crystals. Optical Materials, 2009, 31, 720-724.	3.6	52
47	Spectral Parameters of Nd3+-ion in the Polycrystalline Solid-Solution Composed of Y3Al5O12and Y3Sc2Al3O12. Japanese Journal of Applied Physics, 2003, 42, 5071-5074.	1.5	49
48	Optical pulse compression using cascaded quadratic nonlinearities in periodically poled lithium niobate. Applied Physics Letters, 2004, 84, 1055-1057.	3.3	49
49	90 W continuous-wave diode edge-pumped microchip composite Yb:Y3Al5O12 laser. Applied Physics Letters, 2003, 83, 4086-4088.	3.3	48
50	Saturation Factors of Pump Absorption in Solid-State Lasers. IEEE Journal of Quantum Electronics, 2004, 40, 270-280.	1.9	48
51	Mg-doped congruent LiTaO_3 crystal for large-aperture quasi-phase matching device. Optics Express, 2008, 16, 16963.	3.4	46
52	Highly efficient laser emission in concentrated Nd:YVO4 components under direct pumping into the emitting level. Optics Communications, 2002, 201, 431-435.	2.1	45
53	Characteristics of Nd3+-doped Y3ScAl4O12 ceramic laser. Optical Materials, 2007, 29, 1277-1282.	3.6	44
54	Laser Demonstration of Diode-Pumped Nd ³⁺ -Doped Fluorapatite Anisotropic Ceramics. Applied Physics Express, 2011, 4, 022703.	2.4	44

#	Article	IF	CITATIONS
55	Q-switching and frequency doubling of solid-state lasers by a single intracavity KTP crystal. IEEE Journal of Quantum Electronics, 1994, 30, 800-804.	1.9	43
56	High-Power Operation of Diode Edge-Pumped, Glue-Bonded, Composite Yb:Y3Al5O12Microchip Laser with Ceramic, Undoped YAG Pump Light-Guide. Japanese Journal of Applied Physics, 2005, 44, L1164-L1167.	1.5	43
57	High energy quasi-phase matchedâ€" optical parametric oscillationâ€" using Mg-doped congruent LiTaO_3 crystal. Optics Express, 2010, 18, 253.	3.4	43
58	Oscillation spectra and dynamic effects in a highly-doped microchip Nd:YAG ceramic laser. Optics Express, 2004, 12, 2293.	3.4	42
59	52 mJ narrow-bandwidth degenerated optical parametric system with a large-aperture periodically poled MgO:LiNbO3 device. Optics Letters, 2006, 31, 3149.	3.3	42
60	High-energy, broadly tunable, narrow-bandwidth mid-infrared optical parametric system pumped by quasi-phase-matched devices. Optics Letters, 2008, 33, 1699.	3.3	42
61	Isomer selective infrared spectroscopy of supersonically cooled cis- and trans-N-phenylamides in the region from the amide band to NH stretching vibration. Physical Chemistry Chemical Physics, 2009, 11, 6098.	2.8	41
62	> 3 MW peak power at 266 nm using Nd:YAG/ Cr^4+:YAG microchip laser and fluxless-BBO. Optical Materials Express, 2012, 2, 907.	3.0	40
63	High Peak Power, Passively Q-Switched Yb:YAG/Cr:YAG Micro-Lasers. IEEE Journal of Quantum Electronics, 2013, 49, 454-461.	1.9	40
64	Highly accurate interferometric evaluation of thermal expansion and dn/dT of optical materials. Optical Materials Express, 2014, 4, 876.	3.0	40
65	Comparative investigation of spectroscopic and laser emission characteristics under direct 885-nm pump of concentrated Nd:YAG ceramics and crystals. Applied Physics B: Lasers and Optics, 2001, 73, 757-762.	2.2	39
66	Spectroscopic Properties of Neodymium-Doped Yttrium Orthovanadate Single Crystals with High-Resolution Measurement. Japanese Journal of Applied Physics, 2002, 41, 5999-6002.	1.5	39
67	Periodic Poling in 3-mm-Thick MgO:LiNbO3Crystals. Japanese Journal of Applied Physics, 2003, 42, L108-L110.	1.5	39
68	Efficient frequency doubling of a femtosecond pulse with simultaneous group-velocity matching and quasi phase matching in periodically poled, MgO-doped lithium niobate. Applied Physics Letters, 2003, 82, 3388-3390.	3.3	38
69	High-Power Continuous Wave Green Generation by Single-Pass Frequency Doubling of a Nd:GdVO4Laser in a Periodically Poled MgO:LiNbO3Operating at Room Temperature. Japanese Journal of Applied Physics, 2003, 42, L1296-L1298.	1.5	38
70	Femtosecond Yb3+-doped Y3(Sc0.5Al0.5)2O12 ceramic laser. Optical Materials, 2007, 29, 1283-1288.	3.6	38
71	Passive mode locking of a mixed garnet Yb:Y3ScAl4O12 ceramic laser. Applied Physics Letters, 2004, 85, 5845-5847.	3.3	37
72	Nonlinear optical properties of Ca_5(BO_3)_3F crystal. Optics Express, 2008, 16, 17735.	3.4	37

#	Article	IF	CITATIONS
73	Megawatt level UV output from [110] Cr^4+:YAG passively Q-switched microchip laser. Optics Express, 2011, 19, 22510.	3.4	36
74	Drastic thermal effects reduction through distributed face cooling in a high power giant-pulse tiny laser. Optical Materials Express, 2017, 7, 3214.	3.0	35
75	Efficient laser emission in concentrated Nd laser materials under pumping into the emitting level. IEEE Journal of Quantum Electronics, 2002, 38, 240-245.	1.9	34
76	Tunability enhancement of a terahertz-wave parametric generator pumped by a microchip Nd:YAG laser. Applied Optics, 2009, 48, 2899.	2.1	34
77	Anisotropic Yb:FAP laser ceramics by micro-domain control. Optical Materials Express, 2014, 4, 2006.	3.0	34
78	Spectroscopy and laser emission under hot band resonant pump in highly doped Nd:YAG ceramics. Optics Communications, 2001, 195, 225-232.	2.1	33
79	High-resolution spectroscopy and emission decay in concentrated Nd:YAG ceramics. Journal of the Optical Society of America B: Optical Physics, 2002, 19, 360.	2.1	33
80	Thermally-induced-birefringence effects of highly Nd3+-doped Y3Al5O12 ceramic lasers. Optical Materials, 2007, 29, 1271-1276.	3.6	33
81	High-energy quasi-phase-matched optical parametric oscillation in a 3-mm-thick periodically poled MgO:LiNbO_3 device. Optics Letters, 2004, 29, 2527.	3.3	32
82	Intracavity frequency doubling and Q switching in diode-laser-pumped Nd:YVO_4 lasers. Applied Optics, 1995, 34, 4298.	2.1	29
83	100-W quasi-continuous-wave diode radially pumped microchip composite Yb:YAG laser. Optics Letters, 2002, 27, 1791.	3.3	29
84	Basic enhancement of the overall optical efficiency of intracavity frequency-doubling devices for the $1\hat{a}\in \hat{l}^{1}\!\!/\!\!4$ m continuous-wave Nd:Y3Al5O12 laser emission. Applied Physics Letters, 2003, 83, 3653-3655.	3.3	28
85	High-power, widely tunable, room-temperature picosecond optical parametric oscillator based on cylindrical 5%MgO:PPLN. Optics Letters, 2015, 40, 3897.	3.3	28
86	Sub-nanosecond laser induced air-breakdown with giant-pulse duration tuned Nd:YAG ceramic micro-laser by cavity-length control. Optics Express, 2017, 25, 6302.	3.4	28
87	Generation of Hermite–Gaussian modes and vortex arrays based on two-dimensional gain distribution controlled microchip laser. Optics Letters, 2012, 37, 2661.	3.3	27
88	Widely tunable optical parametric oscillator in a 5Âmm thick 5% MgO:PPLN partial cylinder. Optics Letters, 2013, 38, 860.	3.3	27
89	Radial-Pumped Microchip High-Power Composite Yb:YAG Laser: Design and Power Characteristics. Japanese Journal of Applied Physics, 2001, 40, 146-152.	1.5	26
90	Continuous-wave ultraviolet generation at 354nm in a periodically poled MgO:LiNbO3 by frequency tripling of a diode end-pumped Nd:GdVO4 microlaser. Applied Physics Letters, 2004, 85, 3959-3961.	3.3	26

#	Article	IF	Citations
91	Dual-wavelength source from 5%MgO:PPLN cylinders for the characterization of nonlinear infrared crystals. Optics Express, 2013, 21, 28886.	3.4	25
92	Efficient second to ninth harmonic generation using megawatt peak power microchip laser. Optics Express, 2013, 21, 28849.	3.4	25
93	High brightness energetic pulses delivered by compact microchip-MOPA system. Optics Express, 2018, 26, 8609.	3.4	25
94	Angular quasi-phase-matching. Physical Review A, 2007, 76, .	2.5	24
95	Effective Terahertz Wave Parametric Generation Depending on the Pump Pulse Width Using a LiNbO3 Crystal. IEEE Transactions on Terahertz Science and Technology, 2017, 7, 617-620.	3.1	24
96	Periodic Twinning in Crystal Quartz for Optical Quasi-Phase Matched Secondary Harmonic Conversion. Journal of Materials Research, 2004, 19, 969-972.	2.6	22
97	High-power continuous-wave intracavity frequency-doubled Nd:GdVO/sub 4/-LBO laser under diode pumping into the emitting level. IEEE Journal of Selected Topics in Quantum Electronics, 2005, 11, 631-637.	2.9	22
98	Highly efficient pumping configuration for microchip solid-state laser. Optics Express, 2006, 14, 670.	3.4	22
99	Continuous-wave diode-pumped laser action of Nd^3+-doped photo-thermo-refractive glass. Optics Letters, 2011, 36, 2257.	3.3	22
100	Large-aperture, axis-slant quasi-phase matching device using Mg-doped congruent LiNbO_3 [Invited]. Optical Materials Express, 2011, 1, 1376.	3.0	21
101	Orientation control of micro-domains in anisotropic laser ceramics. Optical Materials Express, 2013, 3, 829.	3.0	21
102	Palm-top size megawatt peak power ultraviolet microlaser. Optical Engineering, 2013, 52, 076102.	1.0	21
103	Development of a laser-induced breakdown spectroscopy system using a ceramic micro-laser for fiber-optic remote analysis. Journal of Nuclear Science and Technology, 2020, 57, 1189-1198.	1.3	21
104	Second-harmonic generations of blue light in nonlinear optical crystals of Gd_1â^xLu_xCa_4O(BO_3)_3 and Gd_1â^xSc_xCa_4O(BO_3)_3 through noncritical phase matching. Journal of the Optical Society of America B: Optical Physics, 2006, 23, 1630.	2.1	20
105	>30 MW peak power from distributed face cooling tiny integrated laser. Optics Express, 2019, 27, 30217.	3.4	20
106	240 kW peak power at 266 nm in nonlinear YAI_3(BO_3)_4 single crystal. Optics Express, 2014, 22, 30325.	3.4	19
107	>MW peak power at 266 nm, low jitter kHz repetition rate from intense pumped microlaser. Optics Express, 2016, 24, 28748.	3.4	19
108	Magnetic domains driving a Q-switched laser. Scientific Reports, 2016, 6, 38679.	3.3	19

#	Article	IF	CITATIONS
109	Magneto-optical Q-switching using magnetic garnet film with micromagnetic domains. Optics Express, 2016, 24, 17635.	3.4	19
110	Diode end-pumped passively Q-switched Nd:YAG laser intra-cavity frequency doubled by LBO crystal. Optics Communications, 2001, 195, 233-240.	2.1	18
111	Tailored Spectral Designing of Layer-by-Layer Type Composite Nd:Y $_{3}$ ScAl $_{4}$ O $_{12}$ Nd:Y $_{3}$ Al $_{5}$ O Selected Topics in Quantum Electronics, 2007, 13, 838-843.	2.9	18
112	Angular quasi-phase-matching experiments and determination of accurate Sellmeier equations for 5%MgO:PPLN. Optics Letters, 2009, 34, 2578.	3.3	18
113	100 Hz operation in 10 PW/sr·cm2 class Nd:YAG Micro-MOPA. Optics Express, 2019, 27, 19555.	3.4	18
114	Continuous-Wave Deep Blue Generation in a Periodically Poled MgO:LiNbO3Crystal by Single-Pass Frequency Doubling of a 912-nm Nd:GdVO4Laser. Japanese Journal of Applied Physics, 2004, 43, L1293-L1295.	1.5	17
115	Enhancing performances of a passively Q-switched Nd:YAGâ^•Cr^4+:YAG microlaser with a volume Bragg grating output coupler. Optics Letters, 2010, 35, 1617.	3.3	17
116	High-gain mid-infrared optical-parametric generation pumped by microchip laser. Optics Express, 2016, 24, 1046.	3.4	17
117	Continuous-wave high-power multi-pass pumped thin-disc Nd:GdVO4 laser. Optics Communications, 2006, 260, 271-276.	2.1	16
118	Crystal growth and optical properties of Bi4Si3O12:Nd. Journal of Crystal Growth, 2001, 229, 188-192.	1.5	15
119	Quasi phase-matched quartz for intense-laser pumped wavelength conversion. Optics Express, 2017, 25, 2369.	3.4	15
120	Model for the polarization dependence of the saturable absorption in Cr^4+:YAG. Optical Materials Express, 2017, 7, 577.	3.0	15
121	>50 MW peak power, high brightness Nd:YAG/Cr ⁴⁺ :YAG microchip laser with unstable resonator. Optics Express, 2022, 30, 5151.	3.4	15
122	Second-Harmonic Nonlinear Mirror CW Mode Locking in Yb:YAG Microchip Lasers. Japanese Journal of Applied Physics, 2003, 42, L649-L651.	1.5	14
123	High efficiency and high energy parametric wavelength conversion using a large aperture periodically poled MgO:LiNbO3. Optics Communications, 2008, 281, 3902-3905.	2.1	14
124	Efficient generation of highly squeezed light with periodically poled MgO:LiNbO_3. Optics Express, 2010, 18, 13114.	3.4	14
125	High peak power Nd:YAG/Cr:YAG ceramic microchip laser with unstable resonator. Optics Express, 2019, 27, 31307.	3.4	14
126	Improvement of laser-beam distortion in large-aperture PPMgLN device by using X-axis Czochralski-grown crystal. Optics Express, 2014, 22, 19668.	3.4	13

#	Article	IF	Citations
127	Giant-pulse Nd:YVO_4 microchip laser with MW-level peak power by emission cross-sectional control. Optics Express, 2016, 24, 3137.	3.4	13
128	Temperature stable operation of YCOB crystal for giant-pulse green microlaser. Optics Express, 2017, 25, 6431.	3.4	13
129	Radiation dose rate effects on the properties of a laser-induced breakdown spectroscopy system developed using a ceramics micro-laser for fiber-optic remote analysis. Journal of Nuclear Science and Technology, 2021, 58, 405-415.	1.3	12
130	High-efficiency longitudinally-pumped miniature Nd:YVO4 laser. Optics and Laser Technology, 1998, 30, 275-280.	4.6	11
131	Process design of microdomains with quantum mechanics for giant pulse lasers. Scientific Reports, 2017, 7, 10732.	3.3	11
132	Concept for Measuring Laser Beam-Quality Parameters The Review of Laser Engineering, 1998, 26, 723-729.	0.0	9
133	Design and Performance of Compact Heatsink for High-Power Diode Edge-Pumped, Microchip Lasers. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13, 619-625.	2.9	9
134	High peak power, passively Q-switched Cr:YAG/Nd:YAG micro-laser for ignition of engines. , 2008, , .		9
135	Group-velocity-matched cascaded quadratic nonlinearities of femtosecond pulses in periodically poled MgO:LiNbO_3. Optics Letters, 2003, 28, 1442.	3.3	8
136	Characteristics of crystal quartz for high-intensity, sub-nanosecond wavelength conversion. Optical Materials Express, 2018, 8, 1259.	3.0	8
137	Pump-beam <inline-formula><roman>M</roman>^{<roman>2</roman>}</inline-formula> factor approximation for design of diode fiber-coupled end-pumped lasers. Optical Engineering, 1999, 38, 1806.	1.0	7
138	High-Performance Microchip Lasers Using Polycrystalline Nd:YAG Ceramics Journal of the Ceramic Society of Japan, 2000, 108, 428-430.	1.3	7
139	<title>Comparison of Nd:YAG single crystals and transparent ceramics as laser materials /title>. , 2004, 5581, 212.</td><td></td><td>7</td></tr><tr><td>140</td><td>Variation of the stimulated emission cross section in Nd:YAG caused by the structural changes of Russell-Saunders manifolds. Optical Materials Express, 2011, 1, 514.</td><td>3.0</td><td>7</td></tr><tr><td>141</td><td>Fundamental investigations in orientation control process for anisotropic laser ceramics. Physica Status Solidi C: Current Topics in Solid State Physics, 2013, 10, 896-902.</td><td>0.8</td><td>7</td></tr><tr><td>142</td><td>High peak-power near-MW laser pulses by third harmonic generation at 355â€nm in Ca5(BO3)3F nonlinear single crystals. Optics Express, 2020, 28, 10524.</td><td>3.4</td><td>7</td></tr><tr><td>143</td><td>Q-Switching and Mode Selection of Coupled-Cavity Er,Yb:Glass Lasers. Japanese Journal of Applied Physics, 1997, 36, L206-L208.</td><td>1.5</td><td>6</td></tr><tr><td>144</td><td>Novel Model of Thermal Conductivity for Optical Materials. The Review of Laser Engineering, 2008, 36, 1081-1084.</td><td>0.0</td><td>6</td></tr></tbody></table></title>		

#	Article	IF	CITATIONS
145	Direct Measurement of Temporal Transmission Distribution of a Saturable Absorber in a Passively Q-Switched Laser. IEEE Journal of Quantum Electronics, 2016, 52, 1-7.	1.9	6
146	Study on the specific heat of Y3Al5O12 between 129â€K and 573â€K. Optical Materials Express, 2021, 11, 5	5 B. o	6
147	Development of a portable laser peening device and its effect on the fatigue properties of HT780 butt-welded joints. Forces in Mechanics, 2022, 7, 100080.	2.8	6
148	High-power edge pumped Yb:YAG single crystal/YAG ceramics hybrid microchip laser. , 2006, , .		5
149	High power, tunable microchip lasers. , 2007, , .		5
150	Temperature and Polarization Dependences of Cr:YAG Transmission for Passive Q-switching., 2009,,.		5
151	Laser-induced damage study of bonded material for a high-brightness laser system. Optics Letters, 2022, 47, 3067.	3.3	5
152	Recovery of the laser-induced breakdown spectroscopy system using a ceramic microchip deteriorated by radiation for the remote elemental analysis. Journal of Nuclear Science and Technology, 2023, 60, 175-184.	1.3	5
153	Thermal Birefringence in Nd:YAG Ceramics. , 2001, , ME14.		4
154	Continuous-wave high-power Nd:YAG-KNbO3 laser at. Optics and Laser Technology, 2004, 36, 581-585.	4.6	4
155	Generation of 6 µm Radiation by Optical Parametric Oscillator and Difference Frequency Generation in Periodically Poled LiNbO3. Japanese Journal of Applied Physics, 2006, 45, 111-115.	1.5	4
156	Passively Q-switched Nd:YAG microchip laser over 1-MW peak output power for micro drilling. , 2006, , .		4
157	Micro Solid-State Photonics - Review. The Review of Laser Engineering, 2009, 37, 227-234.	0.0	4
158	Development of Microchip Laser / Periodically Poled Stoichiometric LiTaO3 (PPSLT) for the Light Source of MALDI. The Review of Laser Engineering, 2009, 37, 290-295.	0.0	4
159	High Brightness Microchip Laser and Engine Ignition. The Review of Laser Engineering, 2010, 38, 576-584.	0.0	4
160	Diode edge-pumped passively Q-switched microchip laser. Optical Engineering, 2015, 54, 090501.	1.0	4
161	Randomly polarised beam produced by magnetooptically Q-switched laser. Scientific Reports, 2017, 7, 15398.	3.3	4
162	Compact, high peak power, passively Q-switched micro-laser for ignition of engines. , 2008, , .		4

#	Article	IF	Citations
163	Polarity inversion of crystal quartz using a quasi-phase matching stamp. Optics Express, 2020, 28, 6505.	3.4	4
164	Effects of Laser Peening with a Pulse Energy of 1.7 mJ on the Residual Stress and Fatigue Properties of A7075 Aluminum Alloy. Metals, 2021, 11, 1716.	2.3	4
165	Comparative study on the linear thermal expansion coefficient of laser host crystals by first principles calculations. Optical Materials Express, 0, , .	3.0	4
166	Generation of High Efficiency 2 µm Laser Pulse from a Periodically Poled 5 mol % MgO-Doped LiNbO3Optical Parametric Oscillator. Applied Physics Express, 2008, 1, 022007.	2.4	3
167	Lens-less edge-pumped high power microchip laser. Applied Physics Letters, 2012, 100, 141105.	3.3	3
168	Focus issue introduction: Advanced Solid-State Lasers (ASSL) 2013. Optics Express, 2014, 22, 8813.	3.4	3
169	Overview of Optical/Laser Technological Advances Leading to Practical Laser Ignition Systems. , 2015, , .		3
170	Focus issue introduction: Advanced Solid-State Lasers (ASSL) 2014. Optics Express, 2015, 23, 8170.	3.4	3
171	> 1 MW peak power at 266 nm in nonlinear YAl3(BO3)4 (YAB) single crystal. , 2015, , .		3
172	Compressed 6 ps pulse in nonlinear amplification of a Q-switched microchip laser. Laser Physics, 2017, 27, 025102.	1.2	3
173	A quantitative thermal and thermomechanical analysis for design optimization and robustness assessment of microassembled high power Yb:CaF2 thin-disk Laser. Optics and Laser Technology, 2018, 105, 229-241.	4.6	3
174	Optical Properties and Laser Oscillations of Highly Neodymium-doped YAG Ceramics. , 2000, , .		3
175	Mid-Infrared optical-parametric generation pumped by sub-nanosecond microchip laser. , 2015, , .		3
176	Diode-Pumped Nd:YAG Ceramics Lasers. , 1998, , .		3
177	Single axial mode operation of resonantly pumped Yb:YAG microchip lasers. Electronics and Communications in Japan, 1996, 79, 64-70.	0.2	2
178	Highly trivalent neodymium ion doped YAG ceramic for microchip lasers., 2001,, TuB3.		2
179	The spectroscopic properties and laser characteristics of polycrystalline Nd: Y3ScxAl(5-x)O12 laser media., 2003,, 444.		2
180	Angular quasi-phase-matching: theory and first experiments. , 2009, , .		2

#	Article	IF	CITATIONS
181	Diode Edge-Pumped, Composite Ceramic Nd:YAG/Sm:YAG Microchip Lasers. , 2010, , .		2
182	Feature issue introduction: optical ceramics. Optical Materials Express, 2014, 4, 2221.	3.0	2
183	Introduction to the Issue on Solid-State Lasers. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21, 1-3.	2.9	2
184	Focus issue introduction: Advanced Solid-State Lasers (ASSL) 2015. Optics Express, 2016, 24, 5674.	3.4	2
185	Structured laser gain-medium by new bonding for power micro-laser. Proceedings of SPIE, 2017, , .	0.8	2
186	High-power operation of diode edge-pumped, microchip Yb:YAG laser composed with YAG ceramic pump wave-guide. , 2005, , .		2
187	Laser-Induced Breakdown of Air with Double-Pulse Excitation. , 2008, , .		2
188	Topical Papers on Microchip Lasers and Applications. Microchip Solid-State Lasers The Review of Laser Engineering, 1998, 26, 847-854.	0.0	2
189	Efficient, Water-Cooled Heat Sink for High-Power Edge-Pumped Microchip Lasers. The Review of Laser Engineering, 2006, 34, 181-187.	0.0	2
190	Practical Solid-State Lasers for Laser Ignition. The Review of Laser Engineering, 2014, 42, 394.	0.0	2
191	High-power, Single-longitudinal-mode Terahertz-wave Generation Pumped by a Microchip Nd:YAG Laser. , 2011, , .		2
192	Fabrication of 10-mm-thick periodically poled Mg-doped congruent LiNbO3 device for high-energy wavelength conversion. , 2012, , .		2
193	Characterization of 8 mol% Mg-doped congruent LiTaO3 for high-energy quasi-phase matching device. , 2013, , .		2
194	Characterization of 8 mol% Mg-doped congruent LiTaO3 crystal for high-energy quasi-phase matching device. , 2013, , .		2
195	Design Method of Efficient, Diode End-Pumped Solid-State Lasers Using M2 Factor The Review of Laser Engineering, 1996, 24, 360-366.	0.0	2
196	Room Temperature 2J Laser Amplifier with Direct Bonded DFC Chip. , 2020, , .		2
197	Output beam characteristics of a Nd:YVO 4 miniature laser. , 1998, , .		1
198	Development and Prospect of Ceramics Laser Elements The Review of Laser Engineering, 1999, 27, 593-598.	0.0	1

#	Article	IF	Citations
199	SHG Laser using YAG Ceramics for Light Source of Photofabrication Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2000, 13, 687-689.	0.3	1
200	Microchip high-power radially pumped composite Yb:YAG laser., 2001,,.		1
201	Diode Edge-Pumped Microchip Composite Yb:YAG Laser. Japanese Journal of Applied Physics, 2002, 41, L606-L608.	1.5	1
202	Laser Emission under 4F5/2 and 4F3/2 Pumping in Nd: LSB Micro-Laser. Japanese Journal of Applied Physics, 2004, 43, L70-L72.	1.5	1
203	<title>All-solid-state diode and end-pumped Nd:YAG laser passively Q-switched by Cr<formula><sup><roman>4+</roman></sup></formula>:YAG saturable absorber</title> ., 2004, 5581, 170.		1
204	Spectroscopic properties and laser operation of RE3+-ion doped garnet materials. , 2006, , .		1
205	Comparison of thermal conductivity in YAG between polycrystalline ceramics and single crystals. , 2006, , FMK2.		1
206	Micro-Lasers for Ignition Engines. The Review of Laser Engineering, 2009, 37, 283-289.	0.0	1
207	High peak-power passively Q-switched all-ceramics Nd:YAG/Cr ⁴⁺ :YAG lasers. Proceedings of SPIE, 2009, , .	0.8	1
208	Laser ignition of combustion engines for clean vehicles. , 2010, , .		1
209	Design of high average power mode-locked oscillator based on edge-pumped all ceramic Yb:YAG/YAG microchip. , 2010, , .		1
210	Laser performance of composite Nd:YAG/Cr:YAG ceramics for laser ignition., 2011,,.		1
211	Microchip laser, ceramic laser toward Giant Micro-photonics. , 2012, , .		1
212	Feature issue introduction: advances in optical materials. Optical Materials Express, 2012, 2, 1171.	3.0	1
213	Discussions on the pump absorption efficiency under hot-band pumping of Nd:YAG., 2013,,.		1
214	> 0.5 MW Peak Power, kHz Repetition Rate at 266 nm Using [100]-Cut Nd:YAG Microchip Laser. , 2014, , .		1
215	Focus issue introduction: Laser Ignition Conference. Optics Express, 2014, 22, A564.	3.4	1
216	Introduction: Nonlinear Optics (NLO) 2013 feature. Optical Materials Express, 2014, 4, 41.	3.0	1

#	Article	IF	CITATIONS
217	Long Time Operation of Composite Ceramic Nd:YAG/Cr:YAG Micro-chip Lasers for Ignition. , 2015, , .		1
218	Introduction: Nonlinear Optics (NLO) 2015 feature issue. Optical Materials Express, 2016, 6, 466.	3.0	1
219	Improvement of optical-to-optical conversion efficiency of passively Q-switched micro-laser pumped by VCSEL module. , 2017, , .		1
220	Feature issue introduction: shaping and patterning crystals for optics. Optical Materials Express, 2017, 7, 3466.	3.0	1
221	Spectroscopic properties and near quantum-limit laser-oscillation in Nd:GdVO4 single crystal. , 2004, , .		1
222	Initial Behavior of the Relaxation Oscillation at Zero-Phonon Line of Yb Gain Media., 2016,,.		1
223	High-power green generation at room temperature in a periodically poled MgO: LiNbO3 by frequency doubling of a diode end-pumped Nd: GdVO4 laser. , 2004, , .		1
224	Reduction of the thermal load in highly Nd3+-doped ceramic YAG by laser oscillation. , 2004, , .		1
225	Efficient ignition of a real automobile engine by a high brightness, passively Q-switched Cr:YAG/Nd:YAG micro-laser. , 2010, , .		1
226	High Peak Power Micro-Laser for Ignition of Automobile Engines. , 2012, , .		1
227	High Peak Power Passively Q-switched Yb:YAG Micro-Lasers. , 2012, , .		1
228	Large-Aperture PPMgLN for High Energy Parametric Process., 2013,,.		1
229	5-cycle, 160-kHz, 20-Î ¹ /4J mid-IR OPCPA. , 2013, , .		1
230	>2 MW peak power at 1560 nm from micro giant-pulse laser/amplifier with PPMgLN OPG. , 2016, , .		1
231	State of The Art Laser Ignition. Journal of the Institute of Electrical Engineers of Japan, 2016, 136, 296-300.	0.0	1
232	Epitaxial growth of Ce substituted yttrium iron garnet film on Nd:YAG substrate., 2017, , .		1
233	Epitaxially Grown Magnetic Garnet Film on Nd:YAG Substrate for Microchip Lasers. , 2017, , .		1
234	Large aperture quasi-phase matched nonlinear material for functional power lasers. , 2017, , .		1

#	Article	IF	CITATIONS
235	Towards Millijoule Narrowband Terahertz Generation Using Chirp-and-Delay in Periodically Poled Lithium Niobate., 2018,,.		1
236	Laser Wavelengths Suitable for Generating Ultrasonic Waves in Resin-Coated Carbon Fiber Composites. Journal of Nondestructive Evaluation, Diagnostics and Prognostics of Engineering Systems, 2020, 3, .	0.9	1
237	Radiation robustness of laser ceramics and single crystal for microchip laser remote analysis. Japanese Journal of Applied Physics, 2022, 61, 032003.	1.5	1
238	Polarization control of Qâ€switch solidâ€state lasers with intracavity SHG crystals. Electronics and Communications in Japan, 1992, 75, 1-12.	0.2	0
239	Singleâ€mode selection in pulsed lasers by injection seeding. Electronics and Communications in Japan, 1993, 76, 23-30.	0.2	O
240	Influence of active-medium properties on high-power solid state laser beam characteristics., 1998,,.		0
241	Improved lasing property of neodymium-doped lanthanum scandium borate microchip laser. , 2002, , .		O
242	<title>Optical and lasing characteristics with Nd:LSB microchip device</title> ., 2002, 4813, 86.		0
243	<title>Diode radial pumped composite microchip Yb:YAG laser: output performances and thermal effects</title> ., 2004, 5581, 128.		O
244	<title>Continuous-wave intracavity frequency-doubled Nd:YAG-KNbO<formula><inf><roman></inf></formula> blue laser at 473 nm</title> ., 2004, , .		0
245	<title>Basic enhancement of the global efficiency of frequency doubling devices for the one-micron continuous-wave Nd:YAG laser emission</title> ., 2004,,.		O
246	<title>Efficient quasi-three-level laser emission of Nd:YAG</title> ., 2004, , .		0
247	<title>Highly efficient laser operation of Nd-vanadates under direct pumping into the emitting level</title> ., 2004, , .		O
248	Diode Edge-Pumped Microchip Composite Yb: YAG Laser. The Review of Laser Engineering, 2005, 33, 228-235.	0.0	0
249	Growth and noncritical phase matching second harmonic generation of Gd $1-x$ R \times Ca 4 O(BO 3) 3 (R =) Tj ETQq 1	1 0.78431	.4 rgBT /Ov
250	High-power CW operation and beam quality of a diode edge-pumped, composite all-ceramic Yb:YAG microchip laser., 2007,,.		0
251	Core-clad-type composites of Nd:GdVO4 single crystal grown by the double die EFG method., 2007,,.		O
252	A general model of a thermal conductivity for optical materials. , 2008, , .		0

#	Article	IF	Citations
253	Over 10W single-pass second harmonic green light generation with periodically poled MgO doped congruent LiNbO $<$ inf $>$ 3 $<$ /inf $>$. , 2008, , .		0
254	Thermally induced local-depolarization in thin YAG ceramics for high-power lasers. , 2008, , .		0
255	Angular quasi-phase-matching in MgO:PPLN. , 2008, , .		0
256	Thermal-birefringence-induced local depolarization in thin YAG ceramics. , 2008, , .		0
257	New fabrication process of anisotropic laser ceramics. , 2009, , .		0
258	The study of spectroscopic properties of Nd: PTR glass. , 2009, , .		0
259	Continuously tunable, high-energy mid-infrared optical-parametric oscillation by angular tuning of PPMgLN with tilted QPM structures. , 2010, , .		0
260	Micro-domain controlled anisotropic laser ceramics assisted by rare-earth trivalent. Proceedings of SPIE, 2011, , .	0.8	0
261	Introduction: Advances in Optical Materials (AIOM) feature. Optical Materials Express, 2011, 1, 523.	3.0	O
262	Focus issue introduction: nonlinear optics. Optical Materials Express, 2011, 1, 1393.	3.0	0
263	Influence of Nd3+-concentration on laser transitions in Nd:YAG. , 2011, , .		0
264	Detailed fluorescent study of Nd:YAG dependent on doping concentration. , 2011, , .		0
265	Characterization of high-energy optical-parametric oscillation by using periodically poled Mg-doped congruent LiTaO < inf > 3 < /inf > . , 2011, , .		0
266	Temperature dependences of stimulated emission cross section in Nd:YAG, Nd:YVO4, and Nd:GdVO4. , 2012, , .		0
267	High-peak-power and Narrow-linewidth Terahertz-wave Generation Pumped by a Microchip Nd:YAG Laser. , 2012, , .		0
268	Giant micro-photonics for laser ignitions. , 2012, , .		0
269	Model for the temperature dependent emission cross section of Nd laser media. , 2012, , .		0
270	Few-cycle Infrared OPCPA system and applications. , 2012, , .		0

#	Article	IF	CITATIONS
271	High brightness microchip lasers for engine ignition. , 2012, , .		O
272	Megawatt peak power UV microlaser. Proceedings of SPIE, 2013, , .	0.8	0
273	Growth and characterization of YAl3(BO3)4 single crystals. , 2013, , .		0
274	250 MW peak power ultrafast mid-IR OPCPA. , 2013, , .		0
275	Feature issue introduction: optical ceramics. Optical Materials Express, 2013, 3, 904.	3.0	0
276	Giant Micro-photonics for Laser Ignition. , 2014, , .		0
277	Updating of temperature coefficients of refractive index in Nd:GdVO4 and Nd:YVO4., 2014,,.		0
278	Numerical model for thermal parameters in optical materials., 2016,,.		0
279	Over 0.5 MW green laser from sub-nanosecond giant pulsed microchip laser. , 2016, , .		0
280	Distributed face cooling scheme for tiny laser power scale-up. , 2017, , .		0
281	Focus issue introduction: Advanced Solid-State Lasers (ASSL) 2016. Optics Express, 2017, 25, 8604.	3.4	0
282	Focus issue introduction: Advanced Solid-State Lasers (ASSL) 2016. Optical Materials Express, 2017, 7, 1431.	3.0	0
283	Pulse-width and pulse-energy dependence of sub-nanosecond laser induced air-breakdown. , 2017, , .		0
284	Q-switched Laser Oscillation in Micro-Domain Controlled Yb:FAP Anisotropic Laser Ceramics., 2018,,.		0
285	Feature issue introduction: Advanced Solid-State Lasers 2017. Optics Express, 2018, 26, 11018.	3.4	0
286	Feature issue introduction: Advanced Solid-State Lasers 2017. Optical Materials Express, 2018, 8, 1246.	3.0	0
287	Tiny Integrated Laser by Room Temperature Surface Activated Bonding. , 2019, , .		0
288	Deformation Properties of Laser Peen Forming Using Sub-nanosecond Microchip Laser. Journal of the Japan Society for Technology of Plasticity, 2021, 62, 8-13.	0.3	0

#	Article	IF	Citations
289	Thermal Expansion Coefficient of Garnet and Bixbyite Laser Crystals Evaluated by First Principles Calculation. , $2021, \dots$		O
290	Report on CLEO/QELS 2000. The Review of Laser Engineering, 2000, 28, 526-547.	0.0	0
291	Drastic Reduction of Depolarization Resulting from Thermally Induced Birefringence by Use of a (100)-Cut YAG Crystal. , 2002, , .		O
292	Periodical poling characteristics of 5mol% MgO-doped congruent LiNbO3 crystals at elevated temperature. , 2003, , .		0
293	High power microchip composite Yb: YAG laser. , 2004, , .		0
294	Reduction of the thermal load by laser oscillation in highly Nd3+-doped ceramic YAG., 2004,,.		0
295	Spectroscopic properties of disordered single crystals: solid-solution of Gd3Ga5O12 and Nd3Ga5O12. , 2004, , .		0
296	Generation of 5 W continuous-wave green power at 531 nm based on a frequency-doubled Nd:GdVO $_4$ micro-laser pumped into the emitting level at 879 nm., 2005,,.		0
297	Stark levels, selection rules, and polarized cross sections of Yb:GdVO4 single crystal., 2005,,.		0
298	Continuous-wave 456-nm blue light generation in a bulk periodically poled MgO:LiNbO_3 crystal. , 2005, , .		0
299	High-power operation of diode edge-pumped, composite microchip Yb:YAG laser with ceramic pump wave-guide. , 2005, , .		0
300	Efficient Green and Blue Light Generation Using SHG Devices with Periodically Poled Structures. The Review of Laser Engineering, 2005, 33, 671-675.	0.0	0
301	300 W CW operation of diode edge-pumped, composite single crystal Yb:YAG/ceramic YAG microchip laser. , 2006, , .		0
302	Diode-pumped Nd:GdVO4 microchip laser with a single-pass green generation in PPMgLN., 2007,,.		0
303	>400 W CW operation of diode edge-pumped, composite all-ceramic Yb:YAG microchip laser. , 2007, , .		0
304	9.6-W cw green output from diode edge-pumped composite vanadate microchip laser with small packaged volume. , $2008, , .$		0
305	Efficient Wavelength Conversion Based on Periodically Poled MgO:LiNbO3 Optical Parametric Oscillator. , 2008, , .		0
306	Novel model on thermal conductivity in laser media: Dependence on rare-earth concentration. , 2008, , .		0

#	Article	IF	CITATIONS
307	Angular Quasi-Phase-Matched SHG and DFG in a 7%MgO:PPLN Crystal Sphere. , 2009, , .		0
308	Experimental validation of Angular Quasi-Phase-Matching., 2009,,.		0
309	Mg-doped congruent LiTaO3 and LiNbO3 for highly efficient and high power/energy QPM optical-parametric systems. , 2009, , .		O
310	Generation of squeezed states of light at 860 nm with periodically poled MgO:LiNbO3 crystal., 2009,,.		0
311	Characterization of nonlinear optical properties of periodically poled MgO:LiNbO3 crystal and generation of squeezed states of light at 860nm., 2009, , .		0
312	Comparative study on the temperature dependent emission cross section of Nd:YAG, Nd:YVO4, and Nd:GdVO4. , $2011, \dots$		0
313	Anisotropic Laser Ceramics toward Giant Micro-photonics. , 2011, , .		0
314	Fabrication of slant quasi phase matching structure in Mg-doped congruent LiNbO3., 2011,,.		0
315	Lens-less edge-pumping design for high power single mode Yb:YAG microchip laser. , 2012, , .		0
316	Lens-less edge-pumping high power single-mode Yb:YAG microchip laser. , 2012, , .		0
317	Promise of the Giant Pulse Microchip Lasers. Nippon Laser Igakkaishi, 2012, 33, 152-157.	0.0	O
318	Accurate interferometric evaluation of thermo-mechanical and -optical properties of YAG, YVO4, and GdVO4. , 2013, , .		0
319	Widely and independently tunable cylindrical OPOs for difference frequency generation experiments. , 2013, , .		0
320	Simultaneously 3-Point Ignitable, Nd:YAG/Cr:YAG Ceramic Micro-Lasers. The Review of Laser Engineering, 2013, 41, 119.	0.0	0
321	High Average Power Few-Cycle Pulses in the Mid-IR, Self-Compression and Continuum Generation. , 2013, , .		0
322	All-parametric dual-wavelength source for difference frequency generation experiments., 2013,,.		0
323	High Repetition Rate MW Peak Power at 532 nm Using Microchip Laser. , 2013, , .		0
324	Fabrication of large-aperture PPMgLN device using X-axis Czochralski-grown crystal., 2014,,.		0

#	Article	IF	CITATIONS
325	Laser Engine Ignition. The Review of Laser Engineering, 2014, 42, 299.	0.0	O
326	1) pumped optical parametric oscillation by using large-aperture PPMgLN device., 2014,,.		0
327	Laser Ignition Spin-Off: Giant Pulse UV Microchip Laser. The Review of Laser Engineering, 2014, 42, 400.	0.0	0
328	Temporal and Spatial Observations of the Anisotropic Transmission of a Cr:YAG Saturable Absorber in a Passively Q-Switched Laser. The Review of Laser Engineering, 2014, 42, 71.	0.0	0
329	Report on Topical Meeting of 12th Advanced Solid State Laser(ASSL) The Review of Laser Engineering, 1997, 25, 247-253.	0.0	0
330	Output Characteristics of Coupled-Cavity Q-Switched Er, Yb: Glass Lasers The Review of Laser Engineering, 1998, 26, 272-276.	0.0	0
331	Continuously pulse width tunable Nd:YAG ceramic micro giant-pulse laser for laser induced breakdown. , 2016, , .		0
332	Polarization dependence of saturable absorption characteristics in Cr4+:YAG., 2016,,.		0
333	Temperature stable operation of YCOB crystal for giant-pulse green micro-laser. , 2016, , .		0
334	Actively controlled Q-switched laser using domains in magnetooptical garnet film. , 2016, , .		0
335	Diode Laser Pumped Solid State Laser Using Magneto-Optical Q Switch. , 2016, , .		0
336	Pulse-Width Scaling law of Air-Breakdown for Laser Ignition Application. , 2017, , .		0
337	>200 mJ High-Brightness Sub-ns Micro-Laser-Based Compact MOPA. , 2017, , .		0
338	Giant Micro-Photonics Toward Innovative Ignition. , 2017, , .		0
339	Giant-pulse width tunable Nd:YAG ceramic microchip laser and amplifier for smart ignition. , 2017, , .		0
340	Multistage Amplification of Microchip Laser for Air Breakdown Experiments., 2017,,.		0
341	Study of Saturable Absorption in Cr4+:YAG Ceramics for the Efficient Q-Switched Laser Action. , 2017, , .		0
342	CW Operation of Distributed Face Cooling Chip for Tiny Integrated Lasers. , 2017, , .		0

#	Article	IF	CITATIONS
343	Laser Damage Threshold Evaluation of Nonlinear Crystal Quartz for Sub-Nanosecond Pulse Irradiation. , $2017, , .$		0
344	High Damage-Resistant Coating Solution for High-Field Ceramics Laser. , 2017, , .		0
345	Terahertz Accelerator Technology. , 2017, , .		0
346	Model for the Polarization Dependence of Saturable Absorption Characteristics in Cr4+:YAG., 2017,,.		0
347	Surface Activated Bonding (SAB) based Sub-nanosecond Distributed Face Cooling (DFC) Handheld Laser. , 2018, , .		O
348	Towards Millijoule Narrowband Terahertz Pulses Using the Chirp-and-Delay Technique. , 2018, , .		0
349	14 MW doughnut beam Nd:YAG/Cr:YAG ceramic microchip laser with unstable cavity. , 2018, , .		0
350	Study on QPM quartz for intense-laser pumped 266 nm generation. , 2018, , .		0
351	Efficient optical parametric generation pumped by a sub-nanosecond MOPA source., 2018,,.		0
352	Suppression of the Secondary Phase at Grain Boundaries in Yb:FAP Anisotropic Laser Ceramics. , 2018, , .		0
353	100Hz operation in the PW/sr/cm2 class Micro-MOPA. , 2018, , .		0
354	Frequency-shifted sources for terahertz-driven linear electron acceleration. , 2018, , .		0
355	Second Harmonic Generation under High Dose-Rate Gamma Ray Irradiation. , 2019, , .		0
356	Study of Gain Aperture under High Pump Power for the Development of High-brightness Ultra-compact MOPA., 2019,,.		0
357	Study of Microchip Laser Pulse Shaping under Amplification. , 2019, , .		O
358	High Efficiency Third Harmonic Generation at 355 nm in CBF (Ca5(BO3)3F) Single Crystal Using Micro-MOPA. , 2019, , .		0
359	Polarity inversion of crystal quartz using a QPM stamp. , 2019, , .		0
360	Transparent Ceramics Made of Non-Isometric Crystals. The Review of Laser Engineering, 2019, 47, 442.	0.0	0

#	Article	IF	CITATIONS
361	High average power ultrafast lasers: large aperture quasi-phase matched nonlinear devices. , 2019, , .		O
362	Quantitative Evaluation of Birefringence of Quartz Crystal in Terahertz Region. , 2020, , .		0
363	Investigation on Gain Aperture as a Compact Tool for Spatial Beam Shaping. , 2020, , .		O
364	Specific Heat of Y3Al5O12 under Cryogenic and Room Temperature Conditions. , 2020, , .		0
365	High-Brightness Unstable Cavity Nd:YAG/Cr4+:YAG Microchip Laser. , 2020, , .		O
366	Stamp method for QPM quartz fabrication. , 2020, , .		0
367	Thermal Expansion Coefficient of Materials for Laser Ceramics Evaluated by the First Principles Calculation., 2021,,.		O
368	37 MW peak power unstable resonator microchip laser. , 2021, , .		0
369	Smart Gain Medium of DFC Chip for >2J Micro-Laser Amplifier under Room Temperature. , 2021, , .		O
370	Tailor-made Laser Chip by Bonding for High Energy Laser System. , 2021, , .		0
371	Remote Laser Analysis Technique for Decommissioning of Nuclear Power Station. Journal of the Institute of Electrical Engineers of Japan, 2022, 142, 77-80.	0.0	O