

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8384/publications.pdf Version: 2024-02-01

ΥλΝΕΙ

#	Article	IF	CITATIONS
1	Nitrogen-Doped Graphene Quantum Dots with Oxygen-Rich Functional Groups. Journal of the American Chemical Society, 2012, 134, 15-18.	13.7	1,832
2	An Electrochemical Avenue to Greenâ€Luminescent Graphene Quantum Dots as Potential Electronâ€Acceptors for Photovoltaics. Advanced Materials, 2011, 23, 776-780.	21.0	1,466
3	ZnO/carbon quantum dots heterostructure with enhanced photocatalytic properties. Applied Surface Science, 2013, 279, 367-373.	6.1	179
4	Electrochemical synthesis of phosphorus-doped graphene quantum dots for free radical scavenging. Physical Chemistry Chemical Physics, 2017, 19, 11631-11638.	2.8	163
5	Chlorine-Doped Graphene Quantum Dots with Enhanced Anti- and Pro-Oxidant Properties. ACS Applied Materials & Interfaces, 2019, 11, 21822-21829.	8.0	77
6	Optimizing oxygen functional groups in graphene quantum dots for improved antioxidant mechanism. Physical Chemistry Chemical Physics, 2019, 21, 1336-1343.	2.8	70
7	Recent advances in ultrathin two-dimensional materials and biomedical applications for reactive oxygen species generation and scavenging. Nanoscale, 2020, 12, 19516-19535.	5.6	65
8	Improving photocatalytic performance of ZnO via synergistic effects of Ag nanoparticles and graphene quantum dots. Physical Chemistry Chemical Physics, 2015, 17, 18645-18652.	2.8	64
9	Designed synthesis of chlorine and nitrogen co-doped Ti3C2 MXene quantum dots and their outstanding hydroxyl radical scavenging properties. Journal of Materials Science and Technology, 2021, 78, 30-37.	10.7	43
10	Green synthesis of graphene quantum dots and silver nanoparticles compounds with excellent surface enhanced Raman scattering performance. Journal of Alloys and Compounds, 2016, 663, 166-171.	5.5	40
11	Free-Radical-Assisted Rapid Synthesis of Graphene Quantum Dots and Their Oxidizability Studies. Langmuir, 2016, 32, 8641-8649.	3.5	37
12	Chemical Nature of Redox-Controlled Photoluminescence of Graphene Quantum Dots by Post-Synthesis Treatment. Journal of Physical Chemistry C, 2016, 120, 26004-26011.	3.1	32
13	Mechanism of Nitrogen-Doped Ti ₃ C ₂ Quantum Dots for Free-Radical Scavenging and the Ultrasensitive H ₂ O ₂ Detection Performance. ACS Applied Materials & Interfaces, 2021, 13, 42442-42450.	8.0	30
14	Thermal Management Enables More Efficient and Stable Perovskite Solar Cells. ACS Energy Letters, 2021, 6, 3029-3036.	17.4	26
15	Nitrogen-Doped Ti ₂ C MXene Quantum Dots as Antioxidants. ACS Applied Nano Materials, 2021, 4, 12308-12315.	5.0	24
16	Investigation of photoluminescence behavior of reduced graphene quantum dots. Inorganic Chemistry Communication, 2019, 99, 199-205.	3.9	20
17	Antioxidant Activity of Graphene Quantum Dots Prepared in Different Electrolyte Environments. Nanomaterials, 2019, 9, 1708.	4.1	19
18	Graphene quantum dots modified ZnO + Cu heterostructure photocatalysts with enhanced photocatalytic performance. RSC Advances, 2016, 6, 106508-106515.	3.6	14

Yan Li

#	Article	IF	CITATIONS
19	Preparation of TiC-Ti3AlC composite coated graphite flakes and their improved oxidation resistance. Ceramics International, 2018, 44, 22567-22573.	4.8	14
20	Post-oxidation treated graphene quantum dots as a fluorescent probe for sensitive detection of copper ions. Chemical Physics Letters, 2016, 664, 127-132.	2.6	13
21	Green preparation of in situ Cr3C2 nano-coatings on graphite surface and their water-wettability and rheological properties. Ceramics International, 2018, 44, 9526-9533.	4.8	13
22	Hydroxylated graphene quantum dots as fluorescent probes for sensitive detection of metal ions. International Journal of Minerals, Metallurgy and Materials, 2020, 27, 91-99.	4.9	13
23	Preparation Fe3O4@chitosan-graphene quantum dots nanocomposites for fluorescence and magnetic resonance imaging. Chemical Physics Letters, 2021, 783, 139060.	2.6	12
24	Synthesis, characterization and photocatalytic activity of graphene quantum dots-Ag solar driven photocatalyst. Journal of Materials Science: Materials in Electronics, 2017, 28, 17570-17577.	2.2	11
25	3D nano-arrays of silver nanoparticles and graphene quantum dots with excellent surface-enhanced Raman scattering. Materials Science and Technology, 2018, 34, 679-687.	1.6	9
26	Light-induced electrostatic lithography: selective discharge of electrets by utilizing photothermal conversion of Ti ₃ C ₂ T _x MXene. Journal of Materials Chemistry A, 2020, 8, 19022-19027.	10.3	9
27	Scavenging activity and reaction mechanism of Ti3C2Tx MXene as a novel free radical scavenger. Ceramics International, 2021, 47, 16555-16561.	4.8	9
28	Electrochemical tuning of optical properties of graphitic quantum dots. Journal of Luminescence, 2015, 166, 322-327.	3.1	5
29	Size controllable preparation of graphitic quantum dots and their photoluminescence behavior. Materials Letters 2016 162 56-59	2.6	3