Xudong Sun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8383835/publications.pdf

Version: 2024-02-01

123 papers 3,419 citations

33 h-index 51 g-index

124 all docs

124 docs citations

times ranked

124

2984 citing authors

#	Article	IF	CITATIONS
1	Morphology-tunable synthesis and formation mechanism of SnO2 particles and their application in Ag–SnO2 electrical contact materials. Ceramics International, 2022, 48, 6052-6061.	4.8	17
2	Sol-gel processing, spectral features and thermal stability of Li-stuffed Li6CaLa2Nb2O12:RE garnet phosphors (RE = Pr, Sm, Tb, Dy). Optical Materials, 2022, 123, 111825.	3.6	1
3	Remarkable structure and luminescence regulation of a Gd ₂ LuAl ₅ O ₁₂ :Ce garnet phosphor with a Ca ²⁺ /Si ⁴⁺ pair for high-quality w-WLED lighting. Dalton Transactions, 2022, 51. 3159-3169.	3.3	4
4	Site-selective and cooperative doping of Gd ₃ Al ₅ O ₁₂ :Ce garnets for structural stabilization and warm WLED lighting of low CCT and high CRI. Dalton Transactions, 2022, 51, 645-654.	3.3	10
5	Synthesis of Bi–Pb–Sn–Cd solder particles for joining Ag-plated PZT ceramics at 100 °C. Journal of Materials Science: Materials in Electronics, 2022, 33, 5899.	2.2	1
6	Quasi-Continuous Network Structure Greatly Improved the Anti-Arc-Erosion Capability of Ag/Y2O3 Electrical Contacts. Materials, 2022, 15, 2450.	2.9	2
7	Superhydrophilic molybdenum nitride nanoplate arrays enable rapid cerium reaction kinetics. Chemical Engineering Journal, 2022, 439, 135513.	12.7	1
8	Effect of annealing on microstructure and luminescence characteristics in spark plasma sintered Ce3+-activated (Gd, Lu)3Al5O12 garnet ceramics. Journal of the European Ceramic Society, 2021, 41, 1586-1592.	5.7	6
9	Preparation of MoSi ₂ Coating on Mo Substrate for Oxidation Resistance by a Facile Method. Journal of Nanoelectronics and Optoelectronics, 2021, 16, 230-234.	0.5	1
10	Synthesis of nanopowders with low agglomeration by elaborating \hat{l}_l values for producing Gd2O3-MgO nanocomposites with extremely fine grain sizes and high mid-infrared transparency. Journal of the European Ceramic Society, 2021, 41, 2898-2907.	5.7	9
11	O/N/S trifunctional doping onÂgraphite felts: A novel strategy toward performance boostingÂof ceriumâ€based redox flow batteries. , 2021, 3, 752-761.		7
12	Self-Template Synthesis of Nitrogen-Doped Hollow Carbon Nanospheres with Rational Mesoporosity for Efficient Supercapacitors. Materials, 2021, 14, 3619.	2.9	4
13	New Mg ²⁺ /Ge ⁴⁺ -Stabilized Gd ₃ Mg _{<i>x</i>} Ge _{<i>x</i>} Al _{5â€"2<i>x</i>} O ₁₂ :Garnet Phosphor with Orange-Yellow Emission for Warm-White LEDs (<i>x</i>) = 2.0â€"2.5). Inorganic Chemistry, 2021, 60, 9773-9784.	Ce 4.0	20
14	Regulating anti-site defects in MgGa2O4:Mn4+ through Mg2+/Ge4+ doping to greatly enhance broadband red emission for plant cultivation. Journal of Materials Research and Technology, 2021, 13, 1-12.	5.8	14
15	Controlled hydrothermal processing of multiform (Y0.95Eu0.05)PO4 crystals and comparison of photoluminescence. Journal of Alloys and Compounds, 2021, 870, 159380.	5.5	10
16	KLn(MoO $<$ sub $>4sub>)<sub>2sub> micro/nanocrystals (Ln = Laâ\in"Lu, Y): systematic hydrothermal crystallization, structure, and the performance of doped Eu<sup>3+sup> for optical thermometry. Dalton Transactions, 2021, 50, 17703-17715.$	3.3	8
17	A novel method for improving particle growth and photoluminescence through Fâ^' substituting for gallery NO3â^' in layered Y/Eu hydroxides. Chemical Engineering Journal, 2020, 380, 122618.	12.7	10
18	A bipolar modified separator using TiO2 nanosheets anchored on N-doped carbon scaffold for high-performance Li–S batteries. Journal of Materials Science and Technology, 2020, 55, 152-158.	10.7	29

#	Article	IF	CITATIONS
19	Systematic synthesis of REVO4 micro/nano crystals with selective exposure of high energy {001} facets and luminescence (RE = Lanthanide and Y0.95Eu0.05). Journal of Materials Research and Technology, 2020, 9, 12547-12558.	5.8	5
20	Garnet-structured Li6CaLa2Nb2O12:Yb/Er new phosphor showing superior performance of optical thermometry. Scripta Materialia, 2020, 185, 140-145.	5.2	34
21	Identification of catalytic sites for cerium redox reactions in a metal-organic framework derived powerful electrocatalyst. Energy Storage Materials, 2020, 32, 11-19.	18.0	6
22	Metal-organic frameworks derived In-based nanoparticles encapsulated by carbonaceous matrix for highly efficient energy storage. Applied Surface Science, 2020, 513, 145894.	6.1	8
23	Coordination polymer templated engineering of YVO ₄ :Eu submicron crystals and photoluminescence. CrystEngComm, 2020, 22, 1024-1031.	2.6	8
24	Coating Y2O3 nano-particles with ZrO2-additive via precipitation method for colloidal processing of highly transparent Y2O3 ceramics. Journal of the European Ceramic Society, 2019, 39, 4996-5004.	5.7	13
25	Upconversion luminescence and favorable temperature sensing performance of eulytite-type Sr ₃ Y(PO ₄) ₃ :Yb ³⁺ /Ln ³⁺ phosphors (Ln=Ho,) Tj	ETQtp1 1 (0. 78 4314 rgE
26	Sol-gel processing of Eu3+ doped Li6CaLa2Nb2O12 garnet for efficient and thermally stable red luminescence under near-ultraviolet/blue light excitation. Chemical Engineering Journal, 2019, 375, 121937.	12.7	54
27	Synthesis via interfacial precipitation, color-tunable photoluminescence and improved thermal stability of (Ce1-Tb)PO4 (x = 0–1) microspheres by energy transfer. Optical Materials, 2019, 94, 64-74.	3.6	4
28	Grafting organic antenna onto rare earth hydroxynitrate nanosheets for excitation-dependent and greatly enhanced photoluminescence by multi-modal energy transfer. Applied Surface Science, 2019, 489, 142-148.	6.1	11
29	Influence of Yb and Si on the fabrication of Yb:YAG transparent ceramics using spherical Y2O3 powders. Ceramics International, 2019, 45, 17354-17362.	4.8	5
30	The effects of Mg2+/Si4+ substitution on crystal structure, local coordination and photoluminescence of (Gd,Lu)3Al5O12:Ce garnet phosphor. Journal of Alloys and Compounds, 2019, 797, 477-485.	5.5	26
31	Excellent anti-arc erosion performance and corresponding mechanisms of a nickel-belt-reinforced silver-based electrical contact material. Journal of Alloys and Compounds, 2019, 788, 163-171.	5.5	32
32	Hexagonal Boron Nitride Nanosheets Grown via Chemical Vapor Deposition for Silver Protection. ACS Applied Nano Materials, 2019, 2, 2830-2835.	5.0	26
33	Multi-color luminescence and thermal stability of eulytite-type Ba3La(PO4)3:Ce3+,Mn2+ phosphors via gel-combustion. Journal of Alloys and Compounds, 2019, 787, 495-502.	5 . 5	12
34	Zn ₃ Ga ₂ Ge ₂ O ₁₀ :Cr ³⁺ Uniform Microspheres: Template-Free Synthesis, Tunable Bandgap/Trap Depth, and <i>In Vivo</i> Rechargeable Near-Infrared-Persistent Luminescence. ACS Applied Bio Materials, 2019, 2, 577-587.	4.6	35
35	Multi-Color Luminescent m-LaPO ₄ :Ce/Tb Monospheres of High Efficiency via Topotactic Phase Transition and Elucidation of Energy Interaction. Inorganic Chemistry, 2019, 58, 890-899.	4.0	21
36	From interlayer to lightweight capping layer: Rational design of mesoporous TiO2 threaded with CNTs for advanced Li–S batteries. Carbon, 2019, 143, 523-530.	10.3	64

#	Article	IF	CITATIONS
37	White-light emitting (Y,Gd)PO4:Dy3+ microspheres: Gd3+ mediated morphology tailoring and selective energy transfer and correlation of photoluminescence behaviors. Materials Research Bulletin, 2019, 110, 149-158.	5.2	14
38	A new protocol for templated synthesis of YVO4:Ln luminescent crystallites (Ln=Eu, Dy, Sm). Journal of Alloys and Compounds, 2019, 776, 773-781.	5.5	23
39	Porous Y2O3 fiber-reinforced silver composite exhibiting enhanced mechanical and electrical properties. Ceramics International, 2019, 45, 1881-1886.	4.8	11
40	Enhanced hydrothermal crystallization and color tailorable photoluminescence of hexagonal structured YPO ₄ :Sm/Tb nanorods. CrystEngComm, 2018, 20, 2357-2365.	2.6	12
41	The effects of Ga3+ substitution on local structure and photoluminescence of Tb3Al5O12:Ce garnet phosphor. Ceramics International, 2018, 44, 8684-8690.	4.8	12
42	Breaking the strong 1D growth habit to yield quasi-equiaxed REPO ₄ nanocrystals (RE =) Tj ETQq0 0 (2018, 20, 796-806.	0 rgBT /O\ 2.6	verlock 10 Tf 18
43	Multi-color emission in monodispersed spheres of tetragonal yttrium phosphate: microwave-assisted fast synthesis, formation mechanism, temperature-dependent luminescence, and application in anti-fake labeling. CrystEngComm, 2018, 20, 3187-3201.	2.6	11
44	Ag/Ti3AlC2 composites with high hardness, high strength and high conductivity. Materials Letters, 2018, 213, 269-273.	2.6	36
45	Luminescent Thermometry by a Y/Eu Binary Layered Rareâ€Earth Hydroxide (LRH) via In Situ Intercalation with Neutral Terbium(III) Complexes. Chemistry - an Asian Journal, 2018, 13, 3664-3669.	3.3	10
46	NaLaW $<$ sub $>$ 2 $<$ /sub $>$ 0 $<$ sub $>$ 7 $<$ /sub $>$ (OH) $<$ sub $>$ 2 $<$ /sub $>$ (H $<$ sub $>$ 2 $<$ /sub $>$ 0): Crystal Structure and RE $<$ sup $>$ 3+ $<$ /sup $>$ Luminescence in the Pristine and Annealed Double Tungstates (RE = Eu, Tb, Sm, and) Tj ETQq0	040orgBT	/Ozverlock 10
47	Selective Crystallization of Four Tungstates (La ₂ W ₃ O ₁₂ ,) Tj ETQq1 1 0.78 Eu ³⁺ Luminescence. Inorganic Chemistry, 2018, 57, 6632-6640.	34314 rgB 4.0	
48	A low temperature and air-sinterable copper–diamine complex-based metal organic decomposition ink for printed electronics. Journal of Materials Chemistry C, 2018, 6, 6406-6415.	5. 5	33
49	Temperature-driven deintercalation and structure evolution of Ag/Ti3AlC2 composites. Ceramics International, 2018, 44, 18129-18134.	4.8	16
50	Well-dispersed (Y _{0.95a^*x} Gd _x Eu _{0.05})(B(OH) ₄)CO ₃ colloidal spheres as a novel precursor for orthoborate red phosphor and the effects of Gd ³⁺ doping on structure and luminescence. CrystEngComm, 2018, 20, 4546-4555.	2.6	6
51	Fabrication of Gd ₂ O ₃ â€MgO nanocomposite optical ceramics with varied crystallographic modifications of Gd ₂ O ₃ constituent. Journal of the American Ceramic Society, 2018, 101, 4887-4891.	3.8	20
52	Surface-functionalized graphite felts: Enhanced performance in cerium-based redox flow batteries. Carbon, 2018, 138, 363-368.	10.3	20
53	Synthesis of equal-sized Y2O3:Bi,Eu mono-spheres and their color-tunable photoluminescence and thermal quenching properties. Ceramics International, 2018, 44, 18462-18470.	4.8	13
54	Influence of ammonium sulfate on YAG nanopowders and Yb:YAG ceramics synthesized by a novel homogeneous co-precipitation method. Journal of Rare Earths, 2018, 36, 981-985.	4.8	6

#	Article	IF	Citations
55	Microstructure evolution and mechanical behavior of Ni-based single crystal superalloy joint brazed with mixed powder at elevated temperature. Journal of Materials Science and Technology, 2017, 33, 1219-1226.	10.7	30
56	Photocatalytic growth of Ag nanocrystals on hydrothermally synthesized multiphasic TiO2/reduced graphene oxide (rGO) nanocomposites and their SERS performance. Applied Surface Science, 2017, 423, 1-12.	6.1	32
57	Yellow-emitting (Tb 1â^'x Ce x) 3 Al 5 O 12 phosphor powder and ceramic (0â‰xâ‰0.05): Phase evolution, photoluminescence, and the process of energy transfer. Ceramics International, 2017, 43, 8163-8170.	4.8	14
58	Two-step crystallization of a phase-pure Ln ₂ 0 layered compound for the smallest Ln ions of Tm, Yb and Lu, anion exchange, and exfoliation. Dalton Transactions, 2017, 46, 12683-12691.	3.3	12
59	Gel-combustion assisted synthesis of eulytite-type Sr3Y(PO4)3 as a single host for narrow-band Eu3+ and broad-band Eu2+ emissions. Ceramics International, 2017, 43, 15107-15114.	4.8	18
60	Interacting layered hydroxide nanosheets with KF leading to Y/Eu hydroxyfluoride, oxyfluoride, and complex fluoride nanocrystals and investigation of photoluminescence. RSC Advances, 2017, 7, 53032-53042.	3.6	10
61	Hydrothermal assisted synthesis and photoluminescence of (Y1-Eu)2WO6 red phosphors. Journal of Alloys and Compounds, 2017, 695, 1984-1992.	5.5	28
62	(LaO.97REO.01YbO.02)2O2S Nanophosphors Converted from Layered Hydroxyl Sulfate and Investigation of Upconversion Photoluminescence (RE=Ho, Er). Nanoscale Research Letters, 2017, 12, 508.	5.7	14
63	Controlled synthesis and the effects of Gd $3+$ substitution, calcination, and particle size on photoluminescence of (Y $0.95\hat{a}^2$ x Gd x Tb 0.05) 2 O 3 green phosphor spheres. Chemical Engineering Journal, 2016, 306, 322-329.	12.7	22
64	Morphology-controllable synthesis and thermal decomposition of Ag and Ni oxalate for Ag-Ni alloy electrical contact materials. Materials and Design, 2016, 108, 640-647.	7.0	31
65	Photoluminescence properties of phosphors based on Lu3+-stabilized Gd3Al5O12:Tb3+/Ce3+ garnet solid solutions. Optical Materials, 2016, 62, 328-334.	3.6	21
66	Novel porous calcium aluminate/phosphate nanocomposites: in situ synthesis, microstructure and permeability. Nanoscale, 2016, 8, 3599-3606.	5.6	6
67	Dispersion of nano-sized yttria powder using triammonium citrate dispersant for the fabrication of transparent ceramics. Ceramics International, 2016, 42, 9737-9743.	4.8	15
68	Sacrificial conversion of layered rare-earth hydroxide (LRH) nanosheets into $(Y \cdot Sub \cdot 1a^2 \cdot x \cdot sub \cdot Eu \cdot Sub \cdot PO \cdot Sub \cdot 4 \cdot sub \cdot nanophosphors and investigation of photoluminescence. Dalton Transactions, 2016, 45, 5290-5299.$	3.3	55
69	Hydrothermal conversion of layered hydroxide nanosheets into (Y _{0.95} Eu _{0.05})PO ₄ and (Y _{0.96a^*x} Tb _{0.04} Eu _x)PO ₄ (x = 0–0.10) nanocrystals for red and color-tailorable emission. RSC Advances. 2016. 6. 22690-22699.	3.6	23
70	Tb3+/Eu3+ codoping of Lu3+-stabilized Gd3Al5O12 for tunable photoluminescence via efficient energy transfer. Journal of Alloys and Compounds, 2016, 670, 161-169.	5.5	27
71	Direct Crystallization of Sulfateâ€Type Layered Hydroxide, Derivation of (Gd,Tb) ₂ O ₃ Green Phosphor, and Photoluminescence. Journal of the American Ceramic Society, 2015, 98, 3236-3242.	3.8	14
72	Structure properties and sintering densification of Gd2Zr2O7 nanoparticles prepared via different acid combustion methods. Journal of Rare Earths, 2015, 33, 195-201.	4.8	18

#	Article	IF	CITATIONS
73	Ethylenediamine-assisted crystallization of Fe ₂ O ₃ microspindles with controllable size and their pseudocapacitance performance. CrystEngComm, 2015, 17, 1521-1525.	2.6	39
74	Crystallization of FeOOH via iron salts: an anion-chemoaffinity controlled hydrolysis toward high performance inorganic pseudocapacitor materials. CrystEngComm, 2015, 17, 1917-1922.	2.6	45
75	Photoluminescent and cathodoluminescent performances of Tb ³⁺ in Lu ³⁺ -stabilized gadolinium aluminate garnet solid-solutions of [(Gd _{1â^*x} Lu _x) _{1â^*y} Tb _y] ₃ Al ₅ O _{RSC Advances, 2015, 5, 59686-59695.}	· 12.	17
76	Facile synthesis of high silver content MOD ink by using silver oxalate precursor for inkjet printing applications. Thin Solid Films, 2015, 589, 381-387.	1.8	67
77	One-step freezing temperature crystallization of layered rare-earth hydroxide $(Ln < sub > 2 < / sub > (OH) < sub > 5 < / sub > NO < sub > 3 < / sub > ·nH < sub > 2 < / sub > O) nanosheets for a wide spectrum of Ln (Ln = Prâ\in Er, and Y), anion exchange with fluorine and sulfate, and microscopic coordination probed via photoluminescence. Journal of Materials Chemistry C. 2015. 3, 3428-3437.$	5.5	50
78	[(Y _{1â^'x} Gd _x) _{0.95} Eu _{0.05}] ₂ (OH) ₅ NO (0 â% x â% 0.50) layered rare-earth hydroxides: exfoliation of unilamellar and single-crystalline nanosheets, assembly of highly oriented and transparent oxide films, and greatly enhanced red photoluminescence by Gd ³⁺ doping, RSC Advances, 2015, 5, 64588-64595.		/sub>Â∙nH< 14
79	Foamed single-crystalline anatase nanocrystals exhibiting enhanced photocatalytic activity. Journal of Materials Chemistry A, 2015, 3, 17837-17848.	10.3	30
80	(Y,Tb,Eu) ₂ O ₃ monospheres for highly fluorescent films and transparent hybrid films with color tunable emission. RSC Advances, 2015, 5, 36122-36128.	3.6	16
81	Hydrothermal-assisted exfoliation of Y/Tb/Eu ternary layered rare-earth hydroxides into tens of micron-sized unilamellar nanosheets for highly oriented and color-tunable nano-phosphor films. Nanoscale Research Letters, 2015, 10, 132.	5.7	11
82	Effects of pre-treatment of starting powder with sulfuric acid on the fabrication of yttria transparent ceramics. Journal of the European Ceramic Society, 2015, 35, 2369-2377.	5.7	14
83	A homogeneous co-precipitation method to synthesize highly sinterability YAG powders for transparent ceramics. Ceramics International, 2015, 41, 3283-3287.	4.8	38
84	Tens of micron-sized unilamellar nanosheets of Y/Eu layered rare-earth hydroxide: efficient exfoliation via fast anion exchange and their self-assembly into oriented oxide film with enhanced photoluminescence. Science and Technology of Advanced Materials, 2014, 15, 014203.	6.1	42
85	Facile and green synthesis of (La _{0.95} Eu _{0.05}) ₂ O ₂ S red phosphors with sulfate-ion pillared layered hydroxides as a new type of precursor: controlled hydrothermal processing, phase evolution and photoluminescence. Science and Technology of Advanced Materials. 2014. 15. 014204.	6.1	23
86	Al ₂ O ₃ /yttrium compound coreâ€"shell structure formation with burst nucleation: a process driven by electrostatic attraction and high surface energy. RSC Advances, 2014, 4, 55400-55406.	3.6	15
87	High strength, low modulus and biocompatible porous Ti–Mo–Fe alloys. Journal of Porous Materials, 2014, 21, 913-919.	2.6	16
88	Processing and Properties of BioCeramic Coatings onto 3D Tiâ€Mesh by DipCasting Method. International Journal of Applied Ceramic Technology, 2014, 11, 1030-1038.	2.1	2
89	Controlled Photocatalytic Growth of Ag Nanocrystals on Brookite and Rutile and Their SERS Performance. ACS Applied Materials & Samp; Interfaces, 2014, 6, 236-243.	8.0	14
90	Fabrication and Luminescent Properties of YAG:Ce Transparent Microspheres by Laser Heating. IEEE Transactions on Nuclear Science, 2014, 61, 362-366.	2.0	3

#	Article	IF	Citations
91	The Fabrication of Monoclinic Gd\$_{2}\$O\$_{3}\$ Transparent Microspheres and Scintillator Array via Laser Heating. IEEE Transactions on Nuclear Science, 2014, 61, 367-372.	2.0	3
92	Synthesis and luminescence properties of BiPO4:Ce,Tb nanorods. Journal of Luminescence, 2014, 152, 37-39.	3.1	13
93	The effects of citric acid on the synthesis and performance of silver–tin oxide electrical contact materials. Journal of Alloys and Compounds, 2014, 588, 30-35.	5 . 5	41
94	Greatly enhanced Dy3+ emission via efficient energy transfer in gadolinium aluminate garnet (Gd3Al5O12) stabilized with Lu3+. Journal of Materials Chemistry C, 2013, 1, 7614.	5 . 5	86
95	Development of Eu3+ activated monoclinic, perovskite, and garnet compounds in the Gd2O3–Al2O3 phase diagram as efficient red-emitting phosphors. Journal of Solid State Chemistry, 2013, 206, 104-112.	2.9	34
96	Layered rare-earth hydroxide and oxide nanoplates of the Y/Tb/Eu system: phase-controlled processing, structure characterization and color-tunable photoluminescence via selective excitation and efficient energy transfer. Science and Technology of Advanced Materials, 2013, 14, 015006.	6.1	50
97	The development of Ce ³⁺ -activated (Gd,Lu) ₃ Al ₅ O ₁₂ garnet solid solutions as efficient yellow-emitting phosphors. Science and Technology of Advanced Materials, 2013, 14, 054201.	6.1	53
98	Yellowâ€Emitting <scp><scp>Y</scp></scp>	ub>11 <th>ub};</th>	ub};
99	Nanoscaled Interface Between Microgold Particles and Biphase Glassâ€Ceramic Matrix. Journal of the American Ceramic Society, 2013, 96, 3662-3669.	3.8	1
100	Gadolinium Aluminate Garnet (<scp><scp>Gd₃Al₅O₁₂</scp></scp>): Crystal Structure Stabilization via Lutetium Doping and Properties of the (<scp><scp>Gd</scp>_{1â°'<i>x</i>}<scp>Lu</scp></scp>	3.8 :/sub> <sc< th=""><th>29 p> <scp>Al <s< th=""></s<></scp></th></sc<>	29 p> <scp>Al <s< th=""></s<></scp>
101	Solid Solutions (<i>xÂ</i> = <i>Â</i> 05). Journal of the American Ceramic Society, 2012, 95, 931-936. Effective lattice stabilization of gadolinium aluminate garnet (GdAG) via Lu ³⁺ doping and development of highly efficient (Gd,Lu)AG:Eu ³⁺ red phosphors. Science and Technology of Advanced Materials, 2012, 13, 035007.	6.1	43
102	Well-defined crystallites autoclaved from the nitrate/NH4OH reaction system as the precursor for (Y,Eu)2O3 red phosphor: Crystallization mechanism, phase and morphology control, and luminescent property. Journal of Solid State Chemistry, 2012, 192, 229-237.	2.9	39
103	The effects of Gd3+ substitution on the crystal structure, site symmetry, and photoluminescence of Y/Eu layered rare-earth hydroxide (LRH) nanoplates. Dalton Transactions, 2012, 41, 1854-1861.	3.3	58
104	Synthesis of Monodispersed Spherical Yttrium Aluminum Garnet (<scp>YAG</scp>) Powders by a Homogeneous Precipitation Method. Journal of the American Ceramic Society, 2012, 95, 3821-3826.	3.8	61
105	Preparation of transparent Y2O3 ceramic by slip casting and vacuum sintering. Journal of Rare Earths, 2012, 30, 57-62.	4.8	24
106	Colloidal processing of Gd2O3:Eu3+ red phosphor monospheres of tunable sizes: Solvent effects on precipitation kinetics and photoluminescence properties of the oxides. Acta Materialia, 2011, 59, 3688-3696.	7.9	69
107	Monodisperse colloidal spheres for (Y,Eu)2O3red-emitting phosphors: establishment of processing window and size-dependent luminescence behavior. Science and Technology of Advanced Materials, 2011, 12, 055001.	6.1	24
108	Characterization of Highâ€Gadolinium Y _{0.6} O ₃ Powder and Fabrication of Transparent Ceramic Scintillator Using Pressureless Sintering. International Journal of Applied Ceramic Technology, 2010, 7, E1.	2.1	6

#	Article	IF	CITATIONS
109	Blueâ€Emitting Li ₂ Sr _{1â^3<i>x</i>/2} Ce _{<i>x</i>/i>} SiO ₄ Phosphors for Ultraviolet White Lightâ€Emitting Diodes. Journal of the American Ceramic Society, 2010, 93, 2018-2023.	3.8	21
110	Effects of Gd ³⁺ Substitution on the Fabrication of Transparent (Y _{1â^'x} Gd _x) ₃ Al ₅ O ₁₂ Ceramics. Journal of the American Ceramic Society, 2010, 93, 2229-2235.	3.8	43
111	Crystal Structure and Photoluminescence Properties of Redâ€Emitting Ca ₉ La _{1â^x} (VO ₄) ₇ :xEu ³⁺ Phosphors for White Lightâ€Emitting Diodes. Journal of the American Ceramic Society, 2010, 93, 4081-4086.	3.8	53
112	Synthesis and optical properties of $(Gd1\hat{a}^{\circ})^{\circ}$, Eux)2O2SO4 nano-phosphors by a novel co-precipitation method. Materials Research Bulletin, 2009, 44, 1822-1827.	5.2	30
113	Synthesis of Dispersed Anatase Microspheres with Hierarchical Structures via Homogeneous Precipitation. European Journal of Inorganic Chemistry, 2009, 2009, 1214-1218.	2.0	14
114	Transparent Nd:YAG Ceramics Fabricated Using Nanosized γâ€Alumina and Yttria Powders. Journal of the American Ceramic Society, 2009, 92, 241-244.	3.8	57
115	Microwave Synthesis of Homogeneous YAG Nanopowder Leading to a Transparent Ceramic. Journal of the American Ceramic Society, 2009, 92, 1217-1223.	3.8	45
116	Temperature Dependent Luminescence of Yellowâ€Emitting αâ€Sialon:Eu ²⁺ Oxynitride Phosphors for White Lightâ€Emitting Diodes. Journal of the American Ceramic Society, 2009, 92, 2668-2673.	3.8	48
117	Morphology-dependent crystallization and luminescence behavior of (Y,Eu)2O3 red phosphors. Acta Materialia, 2009, 57, 5975-5985.	7.9	85
118	Monodispersed Colloidal Spheres for Uniform Y ₂ O ₃ :Eu ³⁺ Red-Phosphor Particles and Greatly Enhanced Luminescence by Simultaneous Gd ³⁺ Doping. Journal of Physical Chemistry C, 2008, 112, 11707-11716.	3.1	297
119	Tb ³⁺ - and Eu ³⁺ -Doped Lanthanum Oxysulfide Nanocrystals. Gelatin-Templated Synthesis and Luminescence Properties. Journal of Physical Chemistry C, 2008, 112, 2353-2358.	3.1	45
120	Uniform Colloidal Spheres for (Y _{1â^²<i>x</i><fi>color (i>x<fi>color (i>x<fi>color (i>x<fi>color (i>x<fi>color (i)x<fi>color (i)x</fi><fi>color (i)x<</fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi>}	6.7	153
121	Homogeneous Precipitation Synthesis and Magnetic Properties of Cobalt Ferrite Nanoparticles. Journal of Nanomaterials, 2008, 2008, 1-4.	2.7	3
122	Intragranular Particle Residual Stress Strengthening of Al2O3-SiC Nanocomposites. Journal of the American Ceramic Society, 2005, 88, 1536-1543.	3.8	59
123	Microstructure and fracture toughness of nickel particle toughened alumina matrix composites. Journal of Materials Science, 1996, 31, 875-880.	3.7	65