Oliver H Jonas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8383828/publications.pdf

Version: 2024-02-01

OLIVED H LONAS

#	Article	IF	CITATIONS
1	Potential role of intratumor bacteria in mediating tumor resistance to the chemotherapeutic drug gemcitabine. Science, 2017, 357, 1156-1160.	12.6	1,059
2	Direct evidence for cancer-cell-autonomous extracellular protein catabolism in pancreatic tumors. Nature Medicine, 2017, 23, 235-241.	30.7	263
3	Tumor Cell–Driven Extracellular Matrix Remodeling Drives Haptotaxis during Metastatic Progression. Cancer Discovery, 2016, 6, 516-531.	9.4	164
4	An implantable microdevice to perform high-throughput in vivo drug sensitivity testing in tumors. Science Translational Medicine, 2015, 7, 284ra57.	12.4	150
5	Microenvironment-Mediated Mechanisms of Resistance to HER2 Inhibitors Differ between HER2+ Breast Cancer Subtypes. Cell Systems, 2018, 6, 329-342.e6.	6.2	72
6	Invasive cancer cell lines exhibit biomechanical properties that are distinct from their noninvasive counterparts. Soft Matter, 2011, 7, 11488.	2.7	50
7	Integrated genetic and pharmacologic interrogation of rare cancers. Nature Communications, 2016, 7, 11987.	12.8	45
8	Tyrosine Kinase Inhibitors Increase MCL1 Degradation and in Combination with BCLXL/BCL2 Inhibitors Drive Prostate Cancer Apoptosis. Clinical Cancer Research, 2018, 24, 5458-5470.	7.0	43
9	First <i>In Vivo</i> Testing of Compounds Targeting Group 3 Medulloblastomas Using an Implantable Microdevice as a New Paradigm for Drug Development. Journal of Biomedical Nanotechnology, 2016, 12, 1297-1302.	1.1	36
10	Genome-Wide Interrogation of Human Cancers Identifies EGLN1 Dependency in Clear Cell Ovarian Cancers. Cancer Research, 2019, 79, 2564-2579.	0.9	32
11	MENA Confers Resistance to Paclitaxel in Triple-Negative Breast Cancer. Molecular Cancer Therapeutics, 2017, 16, 143-155.	4.1	31
12	REV1 inhibitor JH-RE-06 enhances tumor cell response to chemotherapy by triggering senescence hallmarks. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 28918-28921.	7.1	27
13	VISAGE Reveals a Targetable Mitotic Spindle Vulnerability in Cancer Cells. Cell Systems, 2019, 9, 74-92.e8.	6.2	24
14	Surface characterization and investigation on antibacterial activity of CuZn nanofibers prepared by electrospinning. Applied Surface Science, 2020, 508, 144883.	6.1	21
15	A multiplex implantable microdevice assay identifies synergistic combinations of cancer immunotherapies and conventional drugs. Nature Biotechnology, 2022, 40, 1823-1833.	17.5	17
16	Parallel <i>In Vivo</i> Assessment of Drug Phenotypes at Various Time Points during Systemic BRAF Inhibition Reveals Tumor Adaptation and Altered Treatment Vulnerabilities. Clinical Cancer Research, 2016, 22, 6031-6038.	7.0	16
17	Development of a novel probe for measuring drug binding to the F1*S variant of human alpha 1â€acid glycoprotein. Journal of Pharmaceutical Sciences, 2001, 90, 1407-1423.	3.3	13
18	<i>In vivo</i> detection of drug-induced apoptosis in tumors using Raman spectroscopy. Analyst, The, 2018, 143, 4836-4839.	3.5	11

Oliver H Jonas

#	Article	IF	CITATIONS
19	The Translational and Regulatory Development of an Implantable Microdevice for Multiple Drug Sensitivity Measurements in Cancer Patients. IEEE Transactions on Biomedical Engineering, 2022, 69, 412-421.	4.2	9
20	A Miniaturized Platform for Multiplexed Drug Response Imaging in Live Tumors. Cancers, 2021, 13, 653.	3.7	9
21	An Interactive Pipeline for Quantitative Histopathological Analysis of Spatially Defined Drug Effects in Tumors. Journal of Pathology Informatics, 2021, 12, 34.	1.7	6
22	An interventional imageâ€guided microdevice implantation and retrieval method for <i>inâ€vivo</i> drug response assessment. Medical Physics, 2019, 46, 5134-5143.	3.0	5
23	A Two-Photon Microimaging-Microdevice System for Four-Dimensional Imaging of Local Drug Delivery in Tissues. International Journal of Molecular Sciences, 2021, 22, 11752.	4.1	5
24	Long-GRIN-Lens Microendoscopy Enabled by Wavefront Shaping for a Biomedical Microdevice: An Analytical Investigation. Materials, 2021, 14, 3392.	2.9	4
25	Preparation and sterilization of an implantable drug-delivery microdevice for clinical use. MethodsX, 2021, 8, 101382.	1.6	2
26	Ultrastructure of immunogenic cell death in vivo. Microscopy and Microanalysis, 2021, 27, 1390-1391.	0.4	1
27	Pilot trial of an implantable microdevice for In Vivo drug sensitivity testing in patients with early stage, triple negative breast cancer receiving neoadjuvant therapy Journal of Clinical Oncology, 2016, 34, TPS1101-TPS1101.	1.6	1
28	Intratarget Microdosing for Deep Phenotyping of Multiple Drug Effects in the Live Brain. Frontiers in Bioengineering and Biotechnology, 2022, 10, 855755.	4.1	1
29	Machine-learning aided in situ drug sensitivity screening predicts treatment outcomes in ovarian PDX tumors. Translational Oncology, 2022, 21, 101427.	3.7	1
30	Self-Expanding Anchors for Stabilizing Percutaneously Implanted Microdevices in Biological Tissues. Micromachines, 2021, 12, 404.	2.9	0
31	CLRM-05. DRUG-RELEASING MICRODEVICES TO PREDICT RESPONSES TO TARGETED THERAPIES IN PATIENTS WITH GLIOMAS. Neuro-Oncology Advances, 2021, 3, iv2-iv2.	0.7	0
32	555â€A high-throughput in situ screen to identify synergistic combinations of immune-oncology drugs with targeted and cytotoxic agents in a patient-derived humanized mouse model of renal cancer. , 2021, 9, A585-A585.		0
33	Abstract P5-13-05: Multiplex spatial systems analysis of responses to spatially separate nanoliter doses of drug predicts systemic immune-modulating combination treatments in breast cancer. Cancer Research, 2022, 82, P5-13-05-P5-13-05.	0.9	0
34	Abstract 4196: A controlled drug release device facilitates the identification of favorable combinations of immune-oncology drugs with targeted or cytotoxic drugs in a patient-derived humanized mouse model of renal cancer. Cancer Research, 2022, 82, 4196-4196.	0.9	0