
Daiju Kitagawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8382549/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Experimental and Natural Induction of de novo Centriole Formation. Frontiers in Cell and Developmental Biology, 2022, 10, 861864.	3.7	8
2	Emerging insights into symmetry breaking in centriole duplication: updated view on centriole duplication theory. Current Opinion in Structural Biology, 2021, 66, 8-14.	5.7	14
3	Centriole and PCM cooperatively recruit CEP192 to spindle poles to promote bipolar spindle assembly. Journal of Cell Biology, 2021, 220, .	5.2	21
4	Biophysical and biochemical properties of Deup1 self-assemblies: a potential driver for deuterosome formation during multiciliogenesis. Biology Open, 2021, 10, .	1.2	8
5	Cep57 and Cep57L1 maintain centriole engagement in interphase to ensure centriole duplication cycle. Journal of Cell Biology, 2021, 220, .	5.2	10
6	Nu <scp>MA</scp> assemblies organize microtubule asters toÂestablish spindle bipolarity in acentrosomal human cells. EMBO Journal, 2020, 39, e102378.	7.8	97
7	The centriole protein CEP76 negatively regulates PLK1 activity in the cytoplasm for proper mitotic progression. Journal of Cell Science, 2020, 133, .	2.0	6
8	Mechanisms of spindle bipolarity establishment in acentrosomal human cells. Molecular and Cellular Oncology, 2020, 7, 1743899.	0.7	3
9	Overview of the "biophysics in nano-space―session at the 57th annual meeting of the biophysical society of Japan. Biophysical Reviews, 2020, 12, 283-285.	3.2	1
10	The Emerging Role of ncRNAs and RNA-Binding Proteins in Mitotic Apparatus Formation. Non-coding RNA, 2020, 6, 13.	2.6	11
11	Centrosomal and Non-centrosomal Functions Emerged through Eliminating Centrosomes. Cell Structure and Function, 2020, 45, 57-64.	1.1	8
12	A theory of centriole duplication based on self-organized spatial pattern formation. Journal of Cell Biology, 2019, 218, 3537-3547.	5.2	25
13	HsSAS-6-dependent cartwheel assembly ensures stabilization of centriole intermediates. Journal of Cell Science, 2019, 132, .	2.0	24
14	Self-organization of Plk4 regulates symmetry breaking in centriole duplication. Nature Communications, 2019, 10, 1810.	12.8	52
15	The Cep57-pericentrin module organizes PCM expansion and centriole engagement. Nature Communications, 2019, 10, 931.	12.8	54
16	Feedback loops in the Plk4–STIL–HsSAS6 network coordinate site selection for procentriole formation. Biology Open, 2019, 8, .	1.2	20
17	Ultrastructural diversity between centrioles of eukaryotes. Journal of Biochemistry, 2018, 164, 1-8.	1.7	22
18	Bimodal Binding of STIL to Plk4 Controls Proper Centriole Copy Number. Cell Reports, 2018, 23, 3160-3169.e4.	6.4	51

Daiju Kitagawa

#	Article	IF	CITATIONS
19	NEK7 is required for G1 progression and procentriole formation. Molecular Biology of the Cell, 2017, 28, 2123-2134.	2.1	21
20	Katanin p80, NuMA and cytoplasmic dynein cooperate to control microtubule dynamics. Scientific Reports, 2017, 7, 39902.	3.3	25
21	A novel genetic syndrome with <i>STARD9</i> mutation and abnormal spindle morphology. American Journal of Medical Genetics, Part A, 2017, 173, 2690-2696.	1.2	7
22	CDK1 Prevents Unscheduled PLK4-STIL Complex Assembly in Centriole Biogenesis. Current Biology, 2016, 26, 1127-1137.	3.9	68
23	Cep295 is a conserved scaffold protein required for generation of a bona fide mother centriole. Nature Communications, 2016, 7, 12567.	12.8	53
24	LIN-41 inactivation leads to delayed centrosome elimination and abnormal chromosome behavior during female meiosis in <i>Caenorhabditis elegans</i> . Molecular Biology of the Cell, 2016, 27, 799-811.	2.1	14
25	Suppression of ectopic assembly of centriole proteins ensures mitotic spindle integrity. Molecular and Cellular Oncology, 2015, 2, e1002717.	0.7	0
26	<scp>RBM</scp> 14 prevents assembly of centriolar protein complexes and maintains mitotic spindle integrity. EMBO Journal, 2015, 34, 97-114.	7.8	32
27	Direct interaction of Plk4 with STIL ensures formation of a single procentriole per parental centriole. Nature Communications, 2014, 5, 5267.	12.8	210
28	Structural Basis of the 9-Fold Symmetry of Centrioles. Cell, 2011, 144, 364-375.	28.9	317
29	PP2A Phosphatase Acts upon SAS-5 to Ensure Centriole Formation in C.Âelegans Embryos. Developmental Cell, 2011, 20, 550-562.	7.0	51
30	Spindle positioning in human cells relies on proper centriole formation and on the microcephaly proteins CPAP and STIL. Journal of Cell Science, 2011, 124, 3884-3893.	2.0	99
31	Phosphorylation of SAS-6 by ZYG-1 Is Critical for Centriole Formation in C. elegans Embryos. Developmental Cell, 2009, 17, 900-907.	7.0	54
32	Genetic dissection of the formation of the forebrain in Medaka, Oryzias latipes. Mechanisms of Development, 2004, 121, 673-685.	1.7	17
33	Activation of Extracellular Signal-regulated Kinase by Ultraviolet Is Mediated through Src-dependent Epidermal Growth Factor Receptor Phosphorylation. Journal of Biological Chemistry, 2002, 277, 366-371.	3.4	127