
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8381871/publications.pdf Version: 2024-02-01

IVA:N MODA SEDÃ3

#	Article	IF	CITATIONS
1	Characterization of nanostructured hybrid and organic solar cells by impedance spectroscopy. Physical Chemistry Chemical Physics, 2011, 13, 9083.	1.3	1,084
2	Characteristics of High Efficiency Dye-Sensitized Solar Cellsâ€. Journal of Physical Chemistry B, 2006, 110, 25210-25221.	1.2	1,015
3	Low-Temperature Processed Electron Collection Layers of Graphene/TiO ₂ Nanocomposites in Thin Film Perovskite Solar Cells. Nano Letters, 2014, 14, 724-730.	4.5	999
4	Determination of Rate Constants for Charge Transfer and the Distribution of Semiconductor and Electrolyte Electronic Energy Levels in Dye-Sensitized Solar Cells by Open-Circuit Photovoltage Decay Method. Journal of the American Chemical Society, 2004, 126, 13550-13559.	6.6	875
5	General Working Principles of CH ₃ NH ₃ PbX ₃ Perovskite Solar Cells. Nano Letters, 2014, 14, 888-893.	4.5	786
6	Mechanism of carrier accumulation in perovskite thin-absorber solar cells. Nature Communications, 2013, 4, 2242.	5.8	760
7	Recombination in Quantum Dot Sensitized Solar Cells. Accounts of Chemical Research, 2009, 42, 1848-1857.	7.6	747
8	State of the Art and Prospects for Halide Perovskite Nanocrystals. ACS Nano, 2021, 15, 10775-10981.	7.3	705
9	Electron Lifetime in Dye-Sensitized Solar Cells: Theory and Interpretation of Measurements. Journal of Physical Chemistry C, 2009, 113, 17278-17290.	1.5	694
10	Titanium Dioxide Nanomaterials for Photovoltaic Applications. Chemical Reviews, 2014, 114, 10095-10130.	23.0	669
11	Photoinduced Giant Dielectric Constant in Lead Halide Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2014, 5, 2390-2394.	2.1	629
12	Modeling High-Efficiency Quantum Dot Sensitized Solar Cells. ACS Nano, 2010, 4, 5783-5790.	7.3	615
13	Slow Dynamic Processes in Lead Halide Perovskite Solar Cells. Characteristic Times and Hysteresis. Journal of Physical Chemistry Letters, 2014, 5, 2357-2363.	2.1	609
14	Role of the Selective Contacts in the Performance of Lead Halide Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2014, 5, 680-685.	2.1	583
15	High-Efficiency "Green―Quantum Dot Solar Cells. Journal of the American Chemical Society, 2014, 136, 9203-9210.	6.6	547
16	Breakthroughs in the Development of Semiconductor-Sensitized Solar Cells. Journal of Physical Chemistry Letters, 2010, 1, 3046-3052.	2.1	468
17	Capacitive Dark Currents, Hysteresis, and Electrode Polarization in Lead Halide Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2015, 6, 1645-1652.	2.1	430
18	Properties of Contact and Bulk Impedances in Hybrid Lead Halide Perovskite Solar Cells Including Inductive Loop Elements. Journal of Physical Chemistry C, 2016, 120, 8023-8032.	1.5	407

#	Article	IF	CITATIONS
19	Core/Shell Colloidal Quantum Dot Exciplex States for the Development of Highly Efficient Quantum-Dot-Sensitized Solar Cells. Journal of the American Chemical Society, 2013, 135, 15913-15922.	6.6	400
20	Recombination Study of Combined Halides (Cl, Br, I) Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2014, 5, 1628-1635.	2.1	384
21	Improving the performance of colloidal quantum-dot-sensitized solar cells. Nanotechnology, 2009, 20, 20, 29, 20, 295204.	1.3	383
22	Cyclic Voltammetry Studies of Nanoporous Semiconductors. Capacitive and Reactive Properties of Nanocrystalline TiO2 Electrodes in Aqueous Electrolyte. Journal of Physical Chemistry B, 2003, 107, 758-768.	1.2	372
23	Boosting Power Conversion Efficiencies of Quantum-Dot-Sensitized Solar Cells Beyond 8% by Recombination Control. Journal of the American Chemical Society, 2015, 137, 5602-5609.	6.6	367
24	Surface Recombination and Collection Efficiency in Perovskite Solar Cells from Impedance Analysis. Journal of Physical Chemistry Letters, 2016, 7, 5105-5113.	2.1	346
25	Quantum dot-sensitized solar cells. Chemical Society Reviews, 2018, 47, 7659-7702.	18.7	344
26	CdSe Quantum Dot-Sensitized TiO ₂ Electrodes: Effect of Quantum Dot Coverage and Mode of Attachment. Journal of Physical Chemistry C, 2009, 113, 4208-4214.	1.5	328
27	Simulation of Steady-State Characteristics of Dye-Sensitized Solar Cells and the Interpretation of the Diffusion Length. Journal of Physical Chemistry Letters, 2010, 1, 450-456.	2.1	301
28	Determination of carrier density of ZnO nanowires by electrochemical techniques. Applied Physics Letters, 2006, 89, 203117.	1.5	277
29	A review of recent results on electrochemical determination of the density of electronic states of nanostructured metal-oxide semiconductors and organic hole conductors. Inorganica Chimica Acta, 2008, 361, 684-698.	1.2	276
30	Interfaces in Perovskite Solar Cells. Advanced Energy Materials, 2017, 7, 1700623.	10.2	276
31	Design of Injection and Recombination in Quantum Dot Sensitized Solar Cells. Journal of the American Chemical Society, 2010, 132, 6834-6839.	6.6	252
32	Panchromatic Sensitized Solar Cells Based on Metal Sulfide Quantum Dots Grown Directly on Nanostructured TiO ₂ Electrodes. Journal of Physical Chemistry Letters, 2011, 2, 454-460.	2.1	247
33	Impedance spectroscopy characterisation of highly efficient silicon solar cells under different light illumination intensities. Energy and Environmental Science, 2009, 2, 678.	15.6	241
34	Band Engineering in Core/Shell ZnTe/CdSe for Photovoltage and Efficiency Enhancement in Exciplex Quantum Dot Sensitized Solar Cells. ACS Nano, 2015, 9, 908-915.	7.3	241
35	Factors determining the photovoltaic performance of a CdSe quantum dot sensitized solar cell: the role of the linker molecule and of the counter electrode. Nanotechnology, 2008, 19, 424007.	1.3	237
36	Bright Visible-Infrared Light Emitting Diodes Based on Hybrid Halide Perovskite with Spiro-OMeTAD as a Hole-Injecting Layer. Journal of Physical Chemistry Letters, 2015, 6, 1883-1890.	2.1	233

#	Article	IF	CITATIONS
37	Implications of the Negative Capacitance Observed at Forward Bias in Nanocomposite and Polycrystalline Solar Cells. Nano Letters, 2006, 6, 640-650.	4.5	217
38	Energy Band Alignment between Anatase and Rutile TiO ₂ . Journal of Physical Chemistry Letters, 2013, 4, 4182-4187.	2.1	210
39	Stabilization of Black Perovskite Phase in FAPbl ₃ and CsPbl ₃ . ACS Energy Letters, 2020, 5, 1974-1985.	8.8	203
40	Amorphous TiO ₂ Buffer Layer Boosts Efficiency of Quantum Dot Sensitized Solar Cells to over 9%. Chemistry of Materials, 2015, 27, 8398-8405.	3.2	197
41	Theory of Impedance and Capacitance Spectroscopy of Solar Cells with Dielectric Relaxation, Drift-Diffusion Transport, and Recombination. Journal of Physical Chemistry C, 2014, 118, 18983-18991.	1.5	185
42	Hole Transport and Recombination in All-Solid Sb ₂ S ₃ -Sensitized TiO ₂ Solar Cells Using CuSCN As Hole Transporter. Journal of Physical Chemistry C, 2012, 116, 1579-1587.	1.5	175
43	Organo-metal halide perovskite-based solar cells with CuSCN as the inorganic hole selective contact. Journal of Materials Chemistry A, 2014, 2, 12754-12760.	5.2	174
44	From Flat to Nanostructured Photovoltaics: Balance between Thickness of the Absorber and Charge Screening in Sensitized Solar Cells. ACS Nano, 2012, 6, 873-880.	7.3	170
45	Electrical field profile and doping in planar lead halide perovskite solar cells. Applied Physics Letters, 2014, 105, .	1.5	168
46	A Sulfide/Polysulfide-Based Ionic Liquid Electrolyte for Quantum Dot-Sensitized Solar Cells. Journal of the American Chemical Society, 2011, 133, 20156-20159.	6.6	153
47	Controlling the Phase Segregation in Mixed Halide Perovskites through Nanocrystal Size. ACS Energy Letters, 2019, 4, 54-62.	8.8	149
48	High performance PbS Quantum Dot Sensitized Solar Cells exceeding 4% efficiency: the role of metal precursors in the electron injection and charge separation. Physical Chemistry Chemical Physics, 2013, 15, 13835.	1.3	143
49	PEDOT Nanotube Arrays as High Performing Counter Electrodes for Dye Sensitized Solar Cells. Study of the Interactions Among Electrolytes and Counter Electrodes. Advanced Energy Materials, 2011, 1, 781-784.	10.2	142
50	Dye versus Quantum Dots in Sensitized Solar Cells: Participation of Quantum Dot Absorber in the Recombination Process. Journal of Physical Chemistry Letters, 2011, 2, 3032-3035.	2.1	139
51	Fermi Level of Surface States in TiO2Nanoparticles. Nano Letters, 2003, 3, 945-949.	4.5	134
52	Charge Separation in Type II Tunneling Multilayered Structures of CdTe and CdSe Nanocrystals Directly Proven by Surface Photovoltage Spectroscopy. Journal of the American Chemical Society, 2010, 132, 5981-5983.	6.6	133
53	Effect of different lead precursors on perovskite solar cell performance and stability. Journal of Materials Chemistry A, 2015, 3, 9194-9200.	5.2	131
54	Photocatalytic and Photoelectrochemical Degradation of Organic Compounds with All-Inorganic Metal Halide Perovskite Quantum Dots. Journal of Physical Chemistry Letters, 2019, 10, 630-636.	2.1	124

#	Article	IF	CITATIONS
55	Assessing health and environmental impacts of solvents for producing perovskite solar cells. Nature Sustainability, 2021, 4, 277-285.	11.5	117
56	Cooperative kinetics of depolarization in CH ₃ NH ₃ Pbl ₃ perovskite solar cells. Energy and Environmental Science, 2015, 8, 910-915.	15.6	116
57	Impedance analysis of perovskite solar cells: a case study. Journal of Materials Chemistry A, 2019, 7, 12191-12200.	5.2	109
58	Fluorine Treatment of TiO2 for Enhancing Quantum Dot Sensitized Solar Cell Performance. Journal of Physical Chemistry C, 2011, 115, 14400-14407.	1.5	105
59	Diffusion–Recombination Impedance Model for Solar Cells with Disorder and Nonlinear Recombination. ChemElectroChem, 2014, 1, 289-296.	1.7	105
60	Impedance Spectroscopy Measurements in Perovskite Solar Cells: Device Stability and Noise Reduction. ACS Energy Letters, 2018, 3, 1044-1048.	8.8	103
61	Classification of solar cells according to mechanisms of charge separation and charge collection. Physical Chemistry Chemical Physics, 2015, 17, 4007-4014.	1.3	102
62	Harnessing Infrared Photons for Photoelectrochemical Hydrogen Generation. A PbS Quantum Dot Based "Quasi-Artificial Leaf― Journal of Physical Chemistry Letters, 2013, 4, 141-146.	2.1	101
63	Quantum Dot Based Heterostructures for Unassisted Photoelectrochemical Hydrogen Generation. Advanced Energy Materials, 2013, 3, 176-182.	10.2	101
64	Fast and low temperature growth of electron transport layers for efficient perovskite solar cells. Journal of Materials Chemistry A, 2015, 3, 4909-4915.	5.2	101
65	Direct Correlation between Ultrafast Injection and Photoanode Performance in Quantum Dot Sensitized Solar Cells. Journal of Physical Chemistry C, 2010, 114, 22352-22360.	1.5	97
66	Effect of Organic and Inorganic Passivation in Quantum-Dot-Sensitized Solar Cells. Journal of Physical Chemistry Letters, 2013, 4, 1519-1525.	2.1	96
67	Tin perovskite solar cells with >1,300Âh of operational stability in N2 through a synergistic chemical engineering approach. Joule, 2022, 6, 861-883.	11.7	92
68	Photosensitization of TiO2Layers with CdSe Quantum Dots:  Correlation between Light Absorption and Photoinjection. Journal of Physical Chemistry C, 2007, 111, 14889-14892.	1.5	87
69	Chemi-Structural Stabilization of Formamidinium Lead Iodide Perovskite by Using Embedded Quantum Dots. ACS Energy Letters, 2020, 5, 418-427.	8.8	87
70	Polymer/Perovskite Amplifying Waveguides for Active Hybrid Silicon Photonics. Advanced Materials, 2015, 27, 6157-6162.	11.1	83
71	An Equivalent Circuit for Perovskite Solar Cell Bridging Sensitized to Thin Film Architectures. Joule, 2019, 3, 2535-2549.	11.7	83
72	Influence of the Potassium Chloride Concentration on the Physical Properties of Electrodeposited ZnO Nanowire Arrays. Journal of Physical Chemistry C, 2008, 112, 16318-16323.	1.5	82

#	Article	IF	CITATIONS
73	High reduction of interfacial charge recombination in colloidal quantum dot solar cells by metal oxide surface passivation. Nanoscale, 2015, 7, 5446-5456.	2.8	82
74	Colloidal PbS and PbSeS Quantum Dot Sensitized Solar Cells Prepared by Electrophoretic Deposition. Journal of Physical Chemistry C, 2012, 116, 16391-16397.	1.5	81
75	Exploring Graphene Quantum Dots/TiO2 interface in photoelectrochemical reactions: Solar to fuel conversion. Electrochimica Acta, 2016, 187, 249-255.	2.6	79
76	Photoelectrochemical Behavior of Nanostructured TiO2Thin-Film Electrodes in Contact with Aqueous Electrolytes Containing Dissolved Pollutants:Â A Model for Distinguishing between Direct and Indirect Interfacial Hole Transfer from Photocurrent Measurements. Journal of Physical Chemistry B, 2005, 109, 3371-3380.	1.2	78
77	Effect of Mesostructured Layer upon Crystalline Properties and Device Performance on Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2015, 6, 1628-1637.	2.1	78
78	Operation Mechanism of Perovskite Quantum Dot Solar Cells Probed by Impedance Spectroscopy. ACS Energy Letters, 2019, 4, 251-258.	8.8	73
79	High Open Circuit Voltage Quantum Dot Sensitized Solar Cells Manufactured with ZnO Nanowire Arrays and Si/ZnO Branched Hierarchical Structures. Journal of Physical Chemistry Letters, 2011, 2, 1984-1990.	2.1	71
80	Dynamics of Charge Separation and Trap-Limited Electron Transport in TiO ₂ Nanostructures. Journal of Physical Chemistry C, 2007, 111, 13997-14000.	1.5	70
81	Electrodeposition and impedance spectroscopy characterization of ZnO nanowire arrays. Physica Status Solidi (A) Applications and Materials Science, 2008, 205, 2345-2350.	0.8	69
82	Operating Mechanisms of Mesoscopic Perovskite Solar Cells through Impedance Spectroscopy and <i>J</i> – <i>V</i> Modeling. Journal of Physical Chemistry Letters, 2017, 8, 6073-6079.	2.1	69
83	Impedance spectroscopy of thin-film CdTe/CdS solar cells under varied illumination. Journal of Applied Physics, 2009, 106, .	1.1	68
84	Effect of Different Sensitization Technique on the Photoconversion Efficiency of CdS Quantum Dot and CdSe Quantum Rod Sensitized TiO ₂ Solar Cells. Journal of Physical Chemistry C, 2015, 119, 13394-13403.	1.5	68
85	Analysis of the Hysteresis Behavior of Perovskite Solar Cells with Interfacial Fullerene Self-Assembled Monolayers. Journal of Physical Chemistry Letters, 2016, 7, 4622-4628.	2.1	68
86	A new CdTe/ZnO columnar composite film for Eta-solar cells. Physica E: Low-Dimensional Systems and Nanostructures, 2002, 14, 229-232.	1.3	66
87	Recombination rates in heterojunction silicon solar cells analyzed by impedance spectroscopy at forward bias and under illumination. Solar Energy Materials and Solar Cells, 2008, 92, 505-509.	3.0	66
88	Tunable light emission by exciplex state formation between hybrid halide perovskite and core/shell quantum dots: Implications in advanced LEDs and photovoltaics. Science Advances, 2016, 2, e1501104.	4.7	66
89	Deleterious Effect of Negative Capacitance on the Performance of Halide Perovskite Solar Cells. ACS Energy Letters, 2017, 2, 2007-2013.	8.8	65
90	Flash infrared annealing as a cost-effective and low environmental impact processing method for planar perovskite solar cells. Materials Today, 2019, 31, 39-46.	8.3	65

#	Article	IF	CITATIONS
91	Enhancement of the Performance of Perovskite Solar Cells, LEDs, and Optical Amplifiers by Antiâ€Solvent Additive Deposition. Advanced Materials, 2017, 29, 1604056.	11.1	63
92	Progress in halide-perovskite nanocrystals with near-unity photoluminescence quantum yield. Trends in Chemistry, 2021, 3, 499-511.	4.4	63
93	Observation of Diffusion and Tunneling Recombination of Dye-Photoinjected Electrons in Ultrathin TiO2Layers by Surface Photovoltage Transients. Journal of Physical Chemistry B, 2005, 109, 14932-14938.	1.2	62
94	Effect of nanostructured electrode architecture and semiconductor deposition strategy on the photovoltaic performance of quantum dot sensitized solar cells. Electrochimica Acta, 2012, 75, 139-147.	2.6	62
95	Analysis of the UV–Ozoneâ€Treated SnO ₂ Electron Transporting Layer in Planar Perovskite Solar Cells for High Performance and Reduced Hysteresis. Solar Rrl, 2019, 3, 1900191.	3.1	62
96	New iridium complex as additive to the spiro-OMeTAD in perovskite solar cells with enhanced stability. APL Materials, 2014, 2, .	2.2	60
97	Electron Transport Layerâ€Free Solar Cells Based on Perovskite–Fullerene Blend Films with Enhanced Performance and Stability. ChemSusChem, 2016, 9, 2679-2685.	3.6	60
98	Nanoscale Interaction Between CdSe or CdTe Nanocrystals and Molecular Dyes Fostering or Hindering Directional Charge Separation. Small, 2010, 6, 221-225.	5.2	59
99	Inorganic Surface Engineering to Enhance Perovskite Solar Cell Efficiency. ACS Applied Materials & Interfaces, 2017, 9, 13181-13187.	4.0	58
100	Electron injection and scaffold effects in perovskite solar cells. Journal of Materials Chemistry C, 2017, 5, 634-644.	2.7	58
101	Determination of spatial charge separation of diffusing electrons by transient photovoltage measurements. Journal of Applied Physics, 2006, 100, 103705.	1.1	56
102	Selective contacts drive charge extraction in quantum dot solids via asymmetry in carrier transfer kinetics. Nature Communications, 2013, 4, 2272.	5.8	56
103	Boosting Long-Term Stability of Pure Formamidinium Perovskite Solar Cells by Ambient Air Additive Assisted Fabrication. ACS Energy Letters, 2021, 6, 3511-3521.	8.8	56
104	Unravelling the Photocatalytic Behavior of All-Inorganic Mixed Halide Perovskites: The Role of Surface Chemical States. ACS Applied Materials & Interfaces, 2020, 12, 914-924.	4.0	55
105	Electrochemical impedance spectra for the complete equivalent circuit of diffusion and reaction under steady-state recombination current. Physical Chemistry Chemical Physics, 2004, 6, 2983-2988.	1.3	53
106	Temperature dependent normal and anomalous electron diffusion in porousTiO2studied by transient surface photovoltage. Physical Review B, 2006, 73, .	1.1	53
107	Outstanding nonlinear optical properties of methylammonium- and Cs-PbX3 (X = Br, I, and Br–I) perovskites: Polycrystalline thin films and nanoparticles. APL Materials, 2019, 7, .	2.2	53
108	Interpretation of diffusion coefficients in nanostructured materials from random walk numerical simulation. Physical Chemistry Chemical Physics, 2008, 10, 4478.	1.3	52

#	Article	IF	CITATIONS
109	Influence of the substrate on the bulk properties of hybrid lead halide perovskite films. Journal of Materials Chemistry A, 2016, 4, 18153-18163.	5.2	52
110	Conjugated Organic Cations to Improve the Optoelectronic Properties of 2D/3D Perovskites. ACS Energy Letters, 2017, 2, 1969-1970.	8.8	52
111	Perovskite Photovoltaic Modules: Life Cycle Assessment of Pre-industrial Production Process. IScience, 2018, 9, 542-551.	1.9	51
112	Perovskite-Polymer Blends Influencing Microstructures, Nonradiative Recombination Pathways, and Photovoltaic Performance of Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 42542-42551.	4.0	50
113	Large improvement of electron extraction from CdSe quantum dots into a TiO2 thin layer by N3 dye coabsorption. Thin Solid Films, 2008, 516, 6994-6998.	0.8	49
114	Three dimensional-TiO2 nanotube array photoanode architectures assembled on a thin hollow nanofibrous backbone and their performance in quantum dot-sensitized solar cells. Chemical Communications, 2013, 49, 2810.	2.2	48
115	Current Challenges in the Development of Quantum Dot Sensitized Solar Cells. Advanced Energy Materials, 2020, 10, 2001774.	10.2	48
116	Ligand & band gap engineering: tailoring the protocol synthesis for achieving high-quality CsPbl ₃ quantum dots. Nanoscale, 2020, 12, 14194-14203.	2.8	48
117	Single-Exciton Amplified Spontaneous Emission in Thin Films of CsPbX ₃ (X = Br, I) Perovskite Nanocrystals. Journal of Physical Chemistry Letters, 2019, 10, 6389-6398.	2.1	46
118	Comparison of Perovskite Solar Cells with other Photovoltaics Technologies from the Point of View of Life Cycle Assessment. Advanced Energy and Sustainability Research, 2021, 2, 2000088.	2.8	46
119	Modeling and characterization of extremely thin absorber (eta) solar cells based on ZnO nanowires. Physical Chemistry Chemical Physics, 2011, 13, 7162.	1.3	45
120	Sb ₂ S ₃ -Sensitized Photoelectrochemical Cells: Open Circuit Voltage Enhancement through the Introduction of Poly-3-hexylthiophene Interlayer. Journal of Physical Chemistry C, 2012, 116, 20717-20721.	1.5	45
121	Charge transfer kinetics in CdSe quantum dot sensitized solar cells. Physical Chemistry Chemical Physics, 2010, 12, 2819.	1.3	44
122	Fast Regeneration of CdSe Quantum Dots by Ru Dye in Sensitized TiO2 Electrodes. Journal of Physical Chemistry C, 2010, 114, 6755-6761.	1.5	43
123	Homeopathic Perovskite Solar Cells: Effect of Humidity during Fabrication on the Performance and Stability of the Device. Journal of Physical Chemistry C, 2018, 122, 5341-5348.	1.5	43
124	Determination of limiting factors of photovoltaic efficiency in quantum dot sensitized solar cells: Correlation between cell performance and structural properties. Journal of Applied Physics, 2010, 108, 064310.	1.1	42
125	Energy transfer versus charge separation in hybrid systems of semiconductor quantum dots and Ru-dyes as potential co-sensitizers of TiO2-based solar cells. Journal of Applied Physics, 2011, 110, .	1.1	42
126	Easily manufactured TiO ₂ hollow fibers for quantum dot sensitized solar cells. Physical Chemistry Chemical Physics, 2012, 14, 522-528.	1.3	42

#	Article	IF	CITATIONS
127	Enhanced Photovoltaic Performance of Mesoscopic Perovskite Solar Cells by Controlling the Interaction between CH ₃ NH ₃ PbI ₃ Films and CsPbX ₃ Perovskite Nanoparticles. Journal of Physical Chemistry C, 2017, 121, 4239-4245.	1.5	42
128	High-throughput analysis of the ideality factor to evaluate the outdoor performance of perovskite solar minimodules. Nature Energy, 2021, 6, 54-62.	19.8	40
129	Study of the Partial Substitution of Pb by Sn in Cs–Pb–Sn–Br Nanocrystals Owing to Obtaining Stable Nanoparticles with Excellent Optical Properties. Journal of Physical Chemistry C, 2018, 122, 14222-14231.	1.5	38
130	All solution processed low turn-on voltage near infrared LEDs based on core–shell PbS–CdS quantum dots with inverted device structure. Nanoscale, 2014, 6, 8551-8555.	2.8	37
131	Photon Up-Conversion with Lanthanide-Doped Oxide Particles for Solar H ₂ Generation. Journal of Physical Chemistry C, 2014, 118, 11279-11284.	1.5	37
132	Enhancement of Efficiency in Quantum Dot Sensitized Solar Cells Based on CdS/CdSe/CdSeTe Heterostructure by Improving the Light Absorption in the VIS-NIR Region. Electrochimica Acta, 2017, 247, 899-909.	2.6	37
133	Air-stable and efficient inorganic–organic heterojunction solar cells using PbS colloidal quantum dots co-capped by 1-dodecanethiol and oleic acid. Physical Chemistry Chemical Physics, 2012, 14, 14999.	1.3	36
134	Interaction between Colloidal Quantum Dots and Halide Perovskites: Looking for Constructive Synergies. Journal of Physical Chemistry Letters, 2019, 10, 1099-1108.	2.1	36
135	Widening the 2D/3D Perovskite Family for Efficient and Thermal-Resistant Solar Cells by the Use of Secondary Ammonium Cations. ACS Energy Letters, 2020, 5, 1013-1021.	8.8	36
136	Improvement of Photovoltaic Performance of Colloidal Quantum Dot Solar Cells Using Organic Small Molecule as Hole-Selective Layer. Journal of Physical Chemistry Letters, 2017, 8, 2163-2169.	2.1	35
137	How Do Perovskite Solar Cells Work?. Joule, 2018, 2, 585-587.	11.7	34
138	Relative impacts of methylammonium lead triiodide perovskite solar cells based on life cycle assessment. Solar Energy Materials and Solar Cells, 2018, 179, 169-177.	3.0	34
139	Understanding equivalent circuits in perovskite solar cells. Insights from drift-diffusion simulation. Physical Chemistry Chemical Physics, 2022, 24, 15657-15671.	1.3	34
140	Imaging of Resonant Quenching of Surface Plasmons by Quantum Dots. Nano Letters, 2006, 6, 2833-2837.	4.5	33
141	Localized versus delocalized states: Photoluminescence from electrochemically synthesized ZnO nanowires. Journal of Applied Physics, 2009, 106, 054304.	1.1	33
142	Recent insights for achieving mixed halide perovskites without halide segregation. Current Opinion in Electrochemistry, 2018, 11, 84-90.	2.5	33
143	A Perspective on the Commercial Viability of Perovskite Solar Cells. Solar Rrl, 2021, 5, 2100401.	3.1	33
144	Interfacial engineering of quantum dot-sensitized TiO2 fibrous electrodes for futuristic photoanodes in photovoltaic applications. Journal of Materials Chemistry, 2012, 22, 14228.	6.7	32

#	Article	IF	CITATIONS
145	Effect of the electrophoretic deposition of Au NPs in the performance CdS QDs sensitized solar Cells. Electrochimica Acta, 2016, 188, 710-717.	2.6	32
146	PbS quantum dots as additives in methylammonium halide perovskite solar cells: the effect of quantum dot capping. Nanoscale Advances, 2019, 1, 4109-4118.	2.2	32
147	Effect of buffer layer on minority carrier lifetime and series resistance of bifacial heterojunction silicon solar cells analyzed by impedance spectroscopy. Thin Solid Films, 2006, 514, 254-257.	0.8	31
148	Optical Characterization of Lead-Free Cs ₂ Snl ₆ Double Perovskite Fabricated from Degraded and Reconstructed CsSnl ₃ Films. ACS Applied Energy Materials, 2019, 2, 8381-8387.	2.5	30
149	Interpretation of the photoluminescence decay kinetics in metal halide perovskite nanocrystals and thin polycrystalline films. Journal of Luminescence, 2020, 221, 117092.	1.5	30
150	Single step deposition of an interacting layer of a perovskite matrix with embedded quantum dots. Nanoscale, 2016, 8, 14379-14383.	2.8	29
151	White light emission from lead-free mixed-cation doped Cs ₂ SnCl ₆ nanocrystals. Nanoscale, 2022, 14, 1468-1479.	2.8	29
152	Theory of Impedance Spectroscopy of Ambipolar Solar Cells with Trap-Mediated Recombination. Journal of Physical Chemistry C, 2014, 118, 16574-16580.	1.5	28
153	Synergistic Interaction of Dyes and Semiconductor Quantum Dots for Advanced Cascade Cosensitized Solar Cells. Advanced Functional Materials, 2015, 25, 3220-3226.	7.8	28
154	Recombination reduction on lead halide perovskite solar cells based on low temperature synthesized hierarchical TiO ₂ nanorods. Nanoscale, 2016, 8, 6271-6277.	2.8	28
155	Panchromatic Solar-to-H ₂ Conversion by a Hybrid Quantum Dots–Dye Dual Absorber Tandem Device. Journal of Physical Chemistry C, 2014, 118, 891-895.	1.5	27
156	Trend of Perovskite Solar Cells: Dig Deeper to Build Higher. Journal of Physical Chemistry Letters, 2015, 6, 2315-2317.	2.1	27
157	Transformation of PbI ₂ , PbBr ₂ and PbCI ₂ salts into MAPbBr ₃ perovskite by halide exchange as an effective method for recombination reduction. Physical Chemistry Chemical Physics, 2017, 19, 10913-10921.	1.3	27
158	A Comparative Study of Lightâ€Emitting Diodes Based on Allâ€Inorganic Perovskite Nanoparticles (CsPbBr ₃) Synthesized at Room Temperature and by a Hotâ€Injection Method. ChemPlusChem, 2018, 83, 294-299.	1.3	27
159	Analysis of cyclic voltammograms of electrochromic a-WO3 films from voltage-dependent equilibrium capacitance measurements. Journal of Electroanalytical Chemistry, 2004, 565, 329-334.	1.9	26
160	Efficient passivated phthalocyanine-quantum dot solar cells. Chemical Communications, 2015, 51, 1732-1735.	2.2	26
161	Dynamic behaviour of viologen-activated nanostructured TiO2: correlation between kinetics of charging and coloration. Electrochimica Acta, 2004, 49, 745-752.	2.6	25
162	Fullereneâ€Based Materials as Holeâ€Transporting/Electronâ€Blocking Layers: Applications in Perovskite Solar Cells. Chemistry - A European Journal, 2018, 24, 8524-8529.	1.7	25

#	Article	IF	CITATIONS
163	Toward Efficient Carbon Nitride Photoelectrochemical Cells: Understanding Charge Transfer Processes. Advanced Materials Interfaces, 2017, 4, 1600265.	1.9	24
164	Integrated Optical Amplifier–Photodetector on a Wearable Nanocellulose Substrate. Advanced Optical Materials, 2018, 6, 1800201.	3.6	24
165	The Bloom of Perovskite Optoelectronics: Fundamental Science Matters. ACS Energy Letters, 2019, 4, 861-865.	8.8	24
166	Optimizing Performance and Operational Stability of CsPbl ₃ Quantum-Dot-Based Light-Emitting Diodes by Interface Engineering. ACS Applied Electronic Materials, 2020, 2, 2525-2534.	2.0	24
167	Efficient and Stable Blue- and Red-Emitting Perovskite Nanocrystals through Defect Engineering: PbX ₂ Purification. Chemistry of Materials, 2021, 33, 8745-8757.	3.2	24
168	Perovskite-quantum dots interface: Deciphering its ultrafast charge carrier dynamics. Nano Energy, 2018, 49, 471-480.	8.2	23
169	Evaluation of multiple cation/anion perovskite solar cells through life cycle assessment. Sustainable Energy and Fuels, 2018, 2, 1600-1609.	2.5	23
170	Engineering Sr-doping for enabling long-term stable FAPb _{1â^'x} Sr _x I ₃ quantum dots with 100% photoluminescence quantum yield. Journal of Materials Chemistry C, 2021, 9, 1555-1566.	2.7	23
171	Combining Perovskites and Quantum Dots: Synthesis, Characterization, and Applications in Solar Cells, LEDs, and Photodetectors. Advanced Optical Materials, 2022, 10, .	3.6	23
172	Influence of cysteine adsorption on the performance of CdSe quantum dots sensitized solar cells. Materials Chemistry and Physics, 2010, 124, 709-712.	2.0	22
173	Co ₃ O ₄ Based All-Oxide PV: A Numerical Simulation Analyzed Combinatorial Material Science Study. Journal of Physical Chemistry C, 2016, 120, 9053-9060.	1.5	22
174	Tuning optical/electrical properties of 2D/3D perovskite by the inclusion of aromatic cation. Physical Chemistry Chemical Physics, 2018, 20, 30189-30199.	1.3	22
175	Purcell Enhancement and Wavelength Shift of Emitted Light by CsPbI ₃ Perovskite Nanocrystals Coupled to Hyperbolic Metamaterials. ACS Photonics, 2020, 7, 3152-3160.	3.2	22
176	Ultrafast characterization of the electron injection from CdSe quantum dots and dye N719 co-sensitizers into TiO2 using sulfide based ionic liquid for enhanced long term stability. Electrochimica Acta, 2013, 100, 35-43.	2.6	20
177	Device performance and light characteristics stability of quantum-dot-based white-light-emitting diodes. Nano Research, 2018, 11, 1575-1588.	5.8	20
178	Preferred Growth Direction by PbS Nanoplatelets Preserves Perovskite Infrared Light Harvesting for Stable, Reproducible, and Efficient Solar Cells. Advanced Energy Materials, 2020, 10, 2002422.	10.2	20
179	A first-principles study of the stability, electronic structure, and optical properties of halide double perovskite Rb ₂ Sn _{1â^'x} Te _x I ₆ for solar cell applications. Physical Chemistry Chemical Physics, 2021, 23, 4646-4657.	1.3	19
180	MOCVD growth of CdTe on glass: analysis of in situ post-growth annealing. Journal of Crystal Growth, 2004, 262, 19-27.	0.7	18

#	Article	IF	CITATIONS
181	Spray-Pyrolyzed ZnO as Electron Selective Contact for Long-Term Stable Planar CH ₃ NH ₃ PbI ₃ Perovskite Solar Cells. ACS Applied Energy Materials, 2018, 1, 4057-4064.	2.5	18
182	Optical Optimization of the TiO ₂ Mesoporous Layer in Perovskite Solar Cells by the Addition of SiO ₂ Nanoparticles. ACS Omega, 2018, 3, 9798-9804.	1.6	18
183	Tunable Carbon–CsPbI 3 Quantum Dots for White LEDs. Advanced Optical Materials, 2021, 9, 2001508.	3.6	18
184	Homogeneous and inhomogeneous broadening in single perovskite nanocrystals investigated by micro-photoluminescence. Journal of Luminescence, 2021, 240, 118453.	1.5	18
185	High Quality Inkjet Printedâ€Emissive Nanocrystalline Perovskite CsPbBr ₃ Layers for Color Conversion Layer and LEDs Applications. Advanced Materials Technologies, 2022, 7, .	3.0	18
186	Some fundamentals of the vapor and solution growth of ZnSe and ZnO. Journal of Crystal Growth, 1999, 198-199, 968-974.	0.7	17
187	Influence of twinned structure on the morphology of CdTe(111) layers grown by MOCVD on GaAs(100) substrates. Journal of Crystal Growth, 2003, 257, 60-68.	0.7	16
188	Enhanced operational stability through interfacial modification by active encapsulation of perovskite solar cells. Applied Physics Letters, 2020, 116, 113502.	1.5	16
189	Twin coarsening in CdTe(111) films grown on GaAs(100). Acta Materialia, 2006, 54, 4285-4291.	3.8	14
190	Continuous time random walk simulation of short-range electron transport in TiO2 layers compared with transient surface photovoltage measurements. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 182, 280-287.	2.0	13
191	Suppressing the Formation of High <i>n</i> -Phase and 3D Perovskites in the Fabrication of Ruddlesden–Popper Perovskite Thin Films by Bulky Organic Cation Engineering. Chemistry of Materials, 2022, 34, 3076-3088.	3.2	13
192	Pressure and temperature dependence of the band-gap in CdTe. Physica Status Solidi (B): Basic Research, 2003, 235, 441-445.	0.7	12
193	Inhomogeneous Broadening of Photoluminescence Spectra and Kinetics of Nanometer-Thick (Phenethylammonium) ₂ Pbl ₄ Perovskite Thin Films: Implications for Optoelectronics. ACS Applied Nano Materials, 2021, 4, 6170-6177.	2.4	12
194	Experimental Evidence of a UV Light-Induced Long-Range Electric Field in Nanostructured TiO2Thin Films in Contact with Aqueous Electrolytes. Journal of Physical Chemistry B, 2005, 109, 10355-10361.	1.2	11
195	Charge separation at disordered semiconductor heterojunctions from random walk numerical simulations. Physical Chemistry Chemical Physics, 2014, 16, 4082.	1.3	11
196	Structural and Electrical Investigation of Cobalt-Doped NiOx/Perovskite Interface for Efficient Inverted Solar Cells. Nanomaterials, 2020, 10, 872.	1.9	11
197	Nanoscale Perovskiteâ€Sensitized Solar Cell Revisited: Dyeâ€Cell or Perovskiteâ€Cell?. ChemSusChem, 2020, 13, 2571-2576.	3.6	10
198	Mechanisms of Spontaneous and Amplified Spontaneous Emission in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll"><mml:msub><mml:mi>CH</mml:mi><mml:mn>3</mml:mn></mml:msub><mml mathvariant="normal">I<mml:mn>3</mml:mn></mml </mml:math 	:mi ≱.⊠ H ⊧</td <td>mmluoni><mm< td=""></mm<></td>	mmluoni> <mm< td=""></mm<>

Perovskite Thin Films Integrated in an Optical Waveguide. Physical Review Applied, 2020, 13, .

#	Article	IF	CITATIONS
199	High Optical Performance of Cyanâ€Emissive CsPbBr ₃ Perovskite Quantum Dots Embedded in Molecular Organogels. Advanced Optical Materials, 2021, 9, 2001786.	3.6	10
200	Comparison between Trion and Exciton Electronic Properties in CdSe and PbS Nanoplatelets. Journal of Physical Chemistry C, 2021, 125, 15614-15622.	1.5	10
201	A Perspective on the Commercial Viability of Perovskite Solar Cells. Solar Rrl, 2021, 5, 2170113.	3.1	10
202	Deciphering the role of quantum dot size in the ultrafast charge carrier dynamics at the perovskite–quantum dot interface. Journal of Materials Chemistry C, 2020, 8, 14834-14844.	2.7	9
203	Turn defects into strengths. Nature Energy, 2020, 5, 363-364.	19.8	9
204	Enhanced nanoscopy of individual CsPbBr3 perovskite nanocrystals using dielectric sub-micrometric antennas. APL Materials, 2020, 8, 021109.	2.2	9
205	Electronic structure and optical properties of CdTe rock-salt high pressure phase. Physica Status Solidi (B): Basic Research, 2003, 235, 509-513.	0.7	8
206	Quantum Dot-Sensitized Solar Cells. Green Energy and Technology, 2014, , 89-136.	0.4	8
207	Photo-Induced Black Phase Stabilization of CsPbI3 QDs Films. Nanomaterials, 2020, 10, 1586.	1.9	8
208	Directional and Polarized Lasing Action on Pbâ€free FASnI ₃ Integrated in Flexible Optical Waveguides. Advanced Optical Materials, 2022, 10, .	3.6	8
209	EFFECT OF THE CHROMOPHORES STRUCTURES ON THE PERFORMANCE OF SOLID-STATE DYE SENSITIZED SOLAR CELLS. Nano, 2014, 09, 1440005.	0.5	7
210	Abiotic depletion and the potential risk to the supply of cesium. Resources Policy, 2020, 68, 101792.	4.2	7
211	Recycled Photons Traveling Several Millimeters in Waveguides Based on CsPbBr ₃ Perovskite Nanocrystals. Advanced Optical Materials, 2021, 9, 2100807.	3.6	7
212	Morphology and Band Structure of Orthorhombic PbS Nanoplatelets: An Indirect Band Gap Material. Chemistry of Materials, 2021, 33, 420-429.	3.2	7
213	Effect of Pristine Graphene on Methylammonium Lead Iodide Films and Implications on Solar Cell Performance. ACS Applied Energy Materials, 2021, 4, 13943-13951.	2.5	7
214	Numerical study of the growth conditions in an MOCVD reactor: application to the epitaxial growth of HgTe. Journal of Crystal Growth, 2002, 240, 124-134.	0.7	6
215	Comparative analysis of photovoltaic principles governing dye-sensitized solar cells and p-n junctions. , 2004, 5215, 49.		6
216	Vapor growth of Hg1â^'xCdxI2 on glass using CdTe buffer. Thin Solid Films, 2001, 381, 48-51.	0.8	5

#	Article	IF	CITATIONS
217	Optical Amplification in Hollow-Core Negative-Curvature Fibers Doped with Perovskite CsPbBr3 Nanocrystals. Nanomaterials, 2019, 9, 868.	1.9	5
218	Structural characterization of bulk and nanoparticle lead halide perovskite thin films by (S)TEM techniques. Nanotechnology, 2019, 30, 135701.	1.3	5
219	Continuousâ€Flow Synthesis of Orange Emitting Sn(II)â€Doped CsBr Materials. Advanced Optical Materials, 2021, 9, 2101024.	3.6	5
220	Switchable All Inorganic Halide Perovskite Nanocrystalline Photoelectrodes for Solarâ€Driven Organic Transformations. Solar Rrl, 2022, 6, 2100723.	3.1	5
221	Interface Engineering in Perovskite Solar Cells by low concentration of PEAI solution in the antisolvent step. Energy Technology, 0, , .	1.8	5
222	Application of Halide Perovskite Nanocrystals in Solarâ€Driven Photo(electro)Catalysis. Solar Rrl, 2022, 6, .	3.1	5
223	Effect of reduced selectivity of contacts on the current-potential characteristics and conversion performance of solar cells. Solar Energy Materials and Solar Cells, 2004, 85, 51-51.	3.0	4
224	Inhibition of light emission from the metastable tetragonal phase at low temperatures in island-like films of lead iodide perovskites. Nanoscale, 2019, 11, 22378-22386.	2.8	4
225	Preparation of nanoscale inorganic CsPblxBr3-x perovskite photosensitizers on the surface of mesoporous TiO2 film for solid-state sensitized solar cells. Applied Surface Science, 2021, 551, 149387.	3.1	4
226	Thermodynamic stability screening of IR-photonic processed multication halide perovskite thin films. Journal of Materials Chemistry A, 2021, 9, 26885-26895.	5.2	4
227	Study of the chemically activated sublimation of ZnSe. Journal of Crystal Growth, 1999, 197, 497-503.	0.7	3
228	Energy Spotlight. ACS Energy Letters, 2020, 5, 1662-1664.	8.8	3
229	Using combined photoreflectance and photoluminescence for understanding optical transitions in perovskites. , 2015, , .		2
230	Energy Spotlight. ACS Energy Letters, 2021, 6, 3750-3752.	8.8	2
231	Outdoor Performance of Perovskite Photovoltaic Technology. , 0, , .		2
232	Amplified Spontaneous Emission in Thin Films of CsPbX ₃ Perovskite Nanocrystals. , 2019, , .		1
233	Synthetic and Post-Synthetic Strategies to Improve Photoluminescence Quantum Yields in Perovskite Quantum Dots. Catalysts, 2021, 11, 957.	1.6	1
234	Phase Segregation in Perovskite Nanoparticles and Applications of these Materials in Photocatalytic Processes. , 0, , .		1

#	Article	IF	CITATIONS
235	Halide perovskite amplifiers integrated in polymer waveguides. , 2016, , .		0
236	Role of Self-Absorption in the Photoluminescence Waveguided along CsPbBr3 Perovskite Nanocrystals Thin Films. , 2020, , .		0
237	Enabling long-term stable FAPb1-xSrxI3 quantum dots with high optical performance: the effect of Sr2+ doping. , 0, , .		Ο
238	Lead halide perovskite nanocrystals: optical properties and nanophotonics. , 2021, , .		0
239	The role of surface chemical states on the photocatalytic behavior of all-inorganic mixed halide perovskite nanocrystals. , 0, , .		0