
Carlamaria Zoja

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8381785/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mesenchymal Stem Cells Are Renotropic, Helping to Repair the Kidney and Improve Function in Acute Renal Failure. Journal of the American Society of Nephrology: JASN, 2004, 15, 1794-1804.	6.1	690
2	How Does Proteinuria Cause Progressive Renal Damage?. Journal of the American Society of Nephrology: JASN, 2006, 17, 2974-2984.	6.1	647
3	Thrombomodulin Mutations in Atypical Hemolytic–Uremic Syndrome. New England Journal of Medicine, 2009, 361, 345-357.	27.0	495
4	Disruption of the Ang II type 1 receptor promotes longevity in mice. Journal of Clinical Investigation, 2009, 119, 524-530.	8.2	434
5	Leukocyte-endothelial interaction is augmented by high glucose concentrations and hyperglycemia in a NF-kB-dependent fashion Journal of Clinical Investigation, 1998, 101, 1905-1915.	8.2	377
6	Protein overload stimulates RANTES production by proximal tubular cells depending on NF-kB activation. Kidney International, 1998, 53, 1608-1615.	5.2	371
7	Human Bone Marrow Mesenchymal Stem Cells Accelerate Recovery of Acute Renal Injury and Prolong Survival in Mice. Stem Cells, 2008, 26, 2075-2082.	3.2	351
8	Insulin-Like Growth Factor-1 Sustains Stem Cell–Mediated Renal Repair. Journal of the American Society of Nephrology: JASN, 2007, 18, 2921-2928.	6.1	294
9	Reduced umbilical and placental vascular prostacyclin in severe pre-eclampsia. Prostaglandins, 1980, 20, 105-110.	1.2	234
10	Proximal tubular cell synthesis and secretion of endothelin-1 on challenge with albumin and other proteins. American Journal of Kidney Diseases, 1995, 26, 934-941.	1.9	232
11	Alternative Pathway Activation of Complement by Shiga Toxin Promotes Exuberant C3a Formation That Triggers Microvascular Thrombosis. Journal of Immunology, 2011, 187, 172-180.	0.8	220
12	A specific endothelin subtype A receptor antagonist protects against injury in renal disease progression. Kidney International, 1993, 44, 440-444.	5.2	215
13	Add-On Anti–TGF-β Antibody to ACE Inhibitor Arrests Progressive Diabetic Nephropathy in the Rat. Journal of the American Society of Nephrology: JASN, 2003, 14, 1816-1824.	6.1	177
14	Life-Sparing Effect of Human Cord Blood-Mesenchymal Stem Cells in Experimental Acute Kidney Injury. Stem Cells, 2010, 28, 513-522.	3.2	161
15	Tubulo-interstitial lesions mediate renal damage in adriamycin glomerulopathy. Kidney International, 1986, 30, 488-496.	5.2	158
16	How To Fully Protect the Kidney in a Severe Model of Progressive Nephropathy. Journal of the American Society of Nephrology: JASN, 2002, 13, 2898-2908.	6.1	156
17	Shiga toxin-associated hemolytic uremic syndrome: pathophysiology of endothelial dysfunction. Pediatric Nephrology, 2010, 25, 2231-2240.	1.7	156
18	Renal endothelin gene expression is increased in remnant kidney and correlates with disease progression. Kidney International, 1993, 43, 354-358.	5.2	153

Carlamaria Zoja

#	Article	IF	CITATIONS
19	In Response to Protein Load Podocytes Reorganize Cytoskeleton and Modulate Endothelin-1 Gene. American Journal of Pathology, 2005, 166, 1309-1320.	3.8	151
20	Protein traffic activates NF-kB gene signaling and promotes MCP-1–dependent interstitial inflammation. American Journal of Kidney Diseases, 2000, 36, 1226-1241.	1.9	145
21	Renal and systemic nitric oxide synthesis in rats with renal mass reduction. Kidney International, 1997, 52, 171-181.	5.2	138
22	Transforming Growth Factor-β1 Is Up-Regulated by Podocytes in Response to Excess Intraglomerular Passage of Proteins. American Journal of Pathology, 2002, 161, 2179-2193.	3.8	138
23	Mycophenolate mofetil limits renal damage and prolongs life in murine lupus autoimmune disease. Kidney International, 1997, 51, 1583-1589.	5.2	134
24	Cellular responses to protein overload: key event in renal disease progression. Current Opinion in Nephrology and Hypertension, 2004, 13, 31-37.	2.0	132
25	Protein Overload Induces Fractalkine Upregulation in Proximal Tubular Cells through Nuclear Factor IºB– and p38 Mitogen-Activated Protein Kinase–Dependent Pathways. Journal of the American Society of Nephrology: JASN, 2003, 14, 2436-2446.	6.1	118
26	The Nrf2 pathway in the progression of renal disease. Nephrology Dialysis Transplantation, 2014, 29, i19-i24.	0.7	117
27	Unlike each drug alone, lisinopril if combined with avosentan promotes regression of renal lesions in experimental diabetes. American Journal of Physiology - Renal Physiology, 2009, 297, F1448-F1456.	2.7	114
28	SGLT2 inhibitor dapagliflozin limits podocyte damage in proteinuric nondiabetic nephropathy. JCI Insight, 2018, 3, .	5.0	114
29	Role of endothelium-derived nitric oxide in the bleeding tendency of uremia Journal of Clinical Investigation, 1990, 86, 1768-1771.	8.2	110
30	Proximal tubular cells promote fibrogenesis by TGF-β1–mediated induction of peritubular myofibroblasts. Kidney International, 2002, 61, 2066-2077.	5.2	109
31	Shiga toxin-2 triggers endothelial leukocyte adhesion and transmigration via NF-κB dependent up-regulation of IL-8 and MCP-11. Kidney International, 2002, 62, 846-856.	5.2	105
32	Effect of combining ACE inhibitor and statin in severe experimental nephropathy. Kidney International, 2002, 61, 1635-1645.	5.2	103
33	Blocking both type A and B endothelin receptors in the kidney attenuates renal injury and prolongs survival in rats with remnant kidney. American Journal of Kidney Diseases, 1996, 27, 416-423.	1.9	99
34	Verotoxin-1–induced up-regulation of adhesive molecules renders microvascular endothelial cells thrombogenic at high shear stress. Blood, 2001, 98, 1828-1835.	1.4	92
35	Shigatoxin-Induced Endothelin-1 Expression in Cultured Podocytes Autocrinally Mediates Actin Remodeling. American Journal of Pathology, 2006, 169, 1965-1975.	3.8	92
36	Analogs of bardoxolone methyl worsen diabetic nephropathy in rats with additional adverse effects. American Journal of Physiology - Renal Physiology, 2013, 304, F808-F819.	2.7	90

#	Article	IF	CITATIONS
37	Progression of renal injury toward interstitial inflammation and glomerular sclerosis is dependent on abnormal protein filtration. Nephrology Dialysis Transplantation, 2015, 30, 706-712.	0.7	90
38	Proteasomal Processing of Albumin by Renal Dendritic Cells Generates Antigenic Peptides. Journal of the American Society of Nephrology: JASN, 2009, 20, 123-130.	6.1	88
39	Mesenchymal stem cell therapy promotes renal repair by limiting glomerular podocyte and progenitor cell dysfunction in adriamycin-induced nephropathy. American Journal of Physiology - Renal Physiology, 2012, 303, F1370-F1381.	2.7	88
40	Renoprotective effect of contemporary blocking of angiotensin II and endothelin-1 in rats with membranous nephropathy1. Kidney International, 1998, 54, 353-359.	5.2	77
41	Transcriptional Regulation of Nephrin Gene by Peroxisome Proliferator–Activated Receptor-γ Agonist: Molecular Mechanism of the Antiproteinuric Effect of Pioglitazone. Journal of the American Society of Nephrology: JASN, 2006, 17, 1624-1632.	6.1	76
42	Renal Expression of FGF23 in Progressive Renal Disease of Diabetes and the Effect of Ace Inhibitor. PLoS ONE, 2013, 8, e70775.	2.5	75
43	The renoprotective properties of angiotensin-converting enzyme inhibitors in a chronic model of membranous nephropathy are solely due to the inhibition of angiotensin II: Evidence based on comparative studies with a receptor antagonist. American Journal of Kidney Diseases, 1997, 29, 254-264.	1.9	74
44	Bindarit retards renal disease and prolongs survival in murine lupus autoimmune disease. Kidney International, 1998, 53, 726-734.	5.2	71
45	Imatinib ameliorates renal disease and survival in murine lupus autoimmune disease. Kidney International, 2006, 70, 97-103.	5.2	71
46	Rosuvastatin Treatment Prevents Progressive Kidney Inflammation and Fibrosis in Stroke-Prone Rats. American Journal of Pathology, 2007, 170, 1165-1177.	3.8	70
47	<i>Sirt3</i> Deficiency Shortens Life Span and Impairs Cardiac Mitochondrial Function Rescued by <i>Opa1</i> Gene Transfer. Antioxidants and Redox Signaling, 2019, 31, 1255-1271.	5.4	70
48	Complement-Mediated Dysfunction of Glomerular Filtration Barrier Accelerates Progressive Renal Injury. Journal of the American Society of Nephrology: JASN, 2008, 19, 1158-1167.	6.1	63
49	β-Arrestin-1 Drives Endothelin-1–Mediated Podocyte Activation and Sustains Renal Injury. Journal of the American Society of Nephrology: JASN, 2014, 25, 523-533.	6.1	63
50	Involvement of renal tubular tollâ€ike receptor 9 in the development of tubulointerstitial injury in systemic lupus. Arthritis and Rheumatism, 2007, 56, 1569-1578.	6.7	61
51	Lipoprotein X Causes Renal Disease in LCAT Deficiency. PLoS ONE, 2016, 11, e0150083.	2.5	61
52	Evaluation of the Zucker Diabetic Fatty (ZDF) Rat as a Model for Human Disease Based on Urinary Peptidomic Profiles. PLoS ONE, 2012, 7, e51334.	2.5	59
53	Protein Overload Activates Proximal Tubular Cells to Release Vasoactive and Inflammatory Mediators. Nephron Experimental Nephrology, 1999, 7, 420-428.	2.2	56
54	V1/V2 Vasopressin receptor antagonism potentiates the renoprotection of renin–angiotensin system inhibition in rats with renal mass reduction. Kidney International, 2009, 76, 960-967.	5.2	56

#	Article	IF	CITATIONS
55	Distinct cardiac and renal effects of ET _A receptor antagonist and ACE inhibitor in experimental type 2 diabetes. American Journal of Physiology - Renal Physiology, 2011, 301, F1114-F1123.	2.7	56
56	Indomethacin reduces proteinuria in passive Heymann nephritis in rats. Kidney International, 1987, 31, 1335-1343.	5.2	55
57	Pharmacologic control of angiotensin II ameliorates renal disease while reducing renal TGF-beta in experimental mesangioproliferative glomerulonephritis. American Journal of Kidney Diseases, 1998, 31, 453-463.	1.9	55
58	MicroRNA-184 is a downstream effector of albuminuria driving renal fibrosis in rats with diabetic nephropathy. Diabetologia, 2017, 60, 1114-1125.	6.3	54
59	Vasopeptidase inhibitor restores the balance of vasoactive hormones in progressive nephropathy. Kidney International, 2004, 66, 1959-1965.	5.2	52
60	Shiga Toxin Promotes Podocyte Injury in Experimental Hemolytic Uremic Syndrome via Activation of the Alternative Pathway of Complement. Journal of the American Society of Nephrology: JASN, 2014, 25, 1786-1798.	6.1	52
61	Manipulating Sirtuin 3 pathway ameliorates renal damage in experimental diabetes. Scientific Reports, 2020, 10, 8418.	3.3	51
62	Low-protein diet prevents glomerular damage in adriamycin-treated rats. Kidney International, 1985, 28, 21-27.	5.2	50
63	Increased nitric oxide formation in recurrent thrombotic microangiopathies: A possible mediator of microvascular injury. American Journal of Kidney Diseases, 1996, 27, 790-796.	1.9	49
64	Mycophenolate mofetil combined with a cyclooxygenase-2 inhibitor ameliorates murine lupus nephritis. Kidney International, 2001, 60, 653-663.	5.2	49
65	Adding a statin to a combination of ACE inhibitor and ARB normalizes proteinuria in experimental diabetes, which translates into full renoprotection. American Journal of Physiology - Renal Physiology, 2010, 299, F1203-F1211.	2.7	49
66	Diabetic Nephropathy: Novel Molecular Mechanisms and Therapeutic Targets. Frontiers in Pharmacology, 2020, 11, 586892.	3.5	47
67	Plasmatic regulation of vascular prostacyclin in pregnancy BMJ: British Medical Journal, 1981, 282, 512-514.	2.3	46
68	Cyclin-dependent kinase inhibition limits glomerulonephritis and extends lifespan of mice with systemic lupus. Arthritis and Rheumatism, 2007, 56, 1629-1637.	6.7	46
69	C3a receptor blockade protects podocytes from injury in diabetic nephropathy. JCI Insight, 2020, 5, .	5.0	46
70	Angiotensin II Blockade Limits Tubular Protein Overreabsorption and the Consequent Upregulation of Endothelin 1 Gene in Experimental Membranous Nephropathy. Nephron Experimental Nephrology, 1998, 6, 121-131.	2.2	44
71	Progression of chronic kidney disease: insights from animal models. Current Opinion in Nephrology and Hypertension, 2006, 15, 250-257.	2.0	44
72	Experimental Goodpasture's syndrome in Wistar-Kyoto rats immunized with α3 chain of type IV collagen. Kidney International, 1998, 54, 1550-1561.	5.2	43

#	Article	IF	CITATIONS
73	Beneficial Effect of TGFÎ ² Antagonism in Treating Diabetic Nephropathy Depends on When Treatment Is Started. Nephron Experimental Nephrology, 2006, 104, e158-e168.	2.2	43
74	The role of chemokines in progressive renal disease. Frontiers in Bioscience - Landmark, 2009, Volume, 1815.	3.0	43
75	Effects of MCP-1 Inhibition by Bindarit Therapy in a Rat Model of Polycystic Kidney Disease. Nephron, 2015, 129, 52-61.	1.8	43
76	Renoprotection by nitric oxide donor and lisinopril in the remnant kidney model. American Journal of Kidney Diseases, 1999, 33, 746-753.	1.9	42
77	Angiotensin II Contributes to Diabetic Renal Dysfunction in Rodents and Humans via Notch1/Snail Pathway. American Journal of Pathology, 2013, 183, 119-130.	3.8	39
78	Fractalkine and CX3CR1 Mediate Leukocyte Capture by Endothelium in Response to Shiga Toxin. Journal of Immunology, 2008, 181, 1460-1469.	0.8	37
79	Therapy with a Selective Cannabinoid Receptor Type 2 Agonist Limits Albuminuria and Renal Injury in Mice with Type 2 Diabetic Nephropathy. Nephron, 2016, 132, 59-69.	1.8	36
80	Role of platelets in progressive glomerular diseases. Pediatric Nephrology, 1995, 9, 495-502.	1.7	35
81	Lack of the Lectin-like Domain of Thrombomodulin Worsens Shiga Toxin-Associated Hemolytic Uremic Syndrome in Mice. Journal of Immunology, 2012, 189, 3661-3668.	0.8	35
82	Shiga toxin triggers endothelial and podocyte injury: the role of complement activation. Pediatric Nephrology, 2019, 34, 379-388.	1.7	34
83	Ticlopidine prevents renal disease progression in rats with reduced renal mass. Kidney International, 1990, 37, 934-942.	5.2	33
84	Renal protective effect of angiotensin-converting enzyme inhibition in aging rats. American Journal of Medicine, 1992, 92, S60-S63.	1.5	31
85	Targeted Deletion of Angiotensin II Type 1A Receptor Does not Protect Mice from Progressive Nephropathy of Overload Proteinuria. Journal of the American Society of Nephrology: JASN, 2004, 15, 2666-2674.	6.1	31
86	Addition of cyclic angiotensin-(1-7) to angiotensin-converting enzyme inhibitor therapy has a positiveÂadd-on effect in experimental diabeticÂnephropathy. Kidney International, 2019, 96, 906-917.	5.2	31
87	B7–1 Is Not Induced in Podocytes of Human and Experimental Diabetic Nephropathy. Journal of the American Society of Nephrology: JASN, 2016, 27, 999-1005.	6.1	30
88	Shear Stress-Induced Cytoskeleton Rearrangement Mediates NF-κB-Dependent Endothelial Expression of ICAM-1. Microvascular Research, 2000, 60, 182-188.	2.5	29
89	Protein load impairs factor H binding promoting complement-dependent dysfunction of proximal tubular cells. Kidney International, 2009, 75, 1050-1059.	5.2	28
90	Cyclosporine enhances leukocyte adhesion to vascular endothelium under physiologic flow conditions. American Journal of Kidney Diseases, 1996, 28, 23-31.	1.9	27

#	Article	IF	CITATIONS
91	Endothelin and eicosanoid synthesis in cultured mesangial cells. Kidney International, 1990, 37, 927-933.	5.2	26
92	Therapeutic potential of stromal cells of non-renal or renal origin in experimental chronic kidney disease. Stem Cell Research and Therapy, 2018, 9, 220.	5.5	26
93	Partial isolation and function of the prostacyclin regulating plasma factor. Clinical Science, 1985, 69, 383-393.	4.3	25
94	Mitochondrial-dependent Autoimmunity in Membranous Nephropathy of IgG4-related Disease. EBioMedicine, 2015, 2, 456-466.	6.1	24
95	Increased Renal Versican Expression Is Associated with Progression of Chronic Kidney Disease. PLoS ONE, 2012, 7, e44891.	2.5	23
96	Complement Activation Contributes to the Pathophysiology of Shiga Toxin-Associated Hemolytic Uremic Syndrome. Microorganisms, 2019, 7, 15.	3.6	23
97	A previously unrecognized role of C3a in proteinuric progressive nephropathy. Scientific Reports, 2016, 6, 28445.	3.3	22
98	Alteration of thyroid hormone signaling triggers the diabetes-induced pathological growth, remodeling, and dedifferentiation of podocytes. JCI Insight, 2019, 4, .	5.0	21
99	Empagliflozin protects glomerular endothelial cell architecture in experimental diabetes through the <scp>VEGFâ€A</scp> /caveolinâ€1/ <scp>PV</scp> â€1 signaling pathway. Journal of Pathology, 2022, 256, 468-479.	4.5	21
100	Renal Primordia Activate Kidney Regenerative Events in a Rat Model of Progressive Renal Disease. PLoS ONE, 2015, 10, e0120235.	2.5	17
101	ET and Diabetic Nephropathy: Preclinical and Clinical Studies. Seminars in Nephrology, 2015, 35, 188-196.	1.6	17
102	Key pathways in renal disease progression of experimental diabetes: FigureÂ1:. Nephrology Dialysis Transplantation, 2015, 30, iv54-iv59.	0.7	16
103	Fenofibrate attenuates cardiac and renal alterations in young salt-loaded spontaneously hypertensive stroke-prone rats through mitochondrial protection. Journal of Hypertension, 2018, 36, 1129-1146.	0.5	14
104	Combining lisinopril and L-arginine slows disease progression and reduces endothelin-1 in passive Heymann nephritis. Kidney International, 2003, 64, 857-863.	5.2	13
105	Effect of ACE inhibition on glomerular permselectivity and tubular albumin concentration in the renal ablation model. American Journal of Physiology - Renal Physiology, 2011, 300, F1291-F1300.	2.7	13
106	Xenogeneic human serum promotes leukocyte adhesion to porcine endothelium under flow conditions, possibly through the activation of the transcription factor NFâ€₽B. Xenotransplantation, 1998, 5, 57-60.	2.8	12
107	Effects of Rosuvastatin on Glomerular Capillary Size-Selectivity Function in Rats with Renal Mass Ablation. American Journal of Nephrology, 2007, 27, 630-638.	3.1	12
108	Glomerulonephritis. Current Opinion in Nephrology and Hypertension, 1993, 2, 465-474.	2.0	10

#	Article	IF	CITATIONS
109	A preclinical overview of emerging therapeutic targets for glomerular diseases. Expert Opinion on Therapeutic Targets, 2019, 23, 593-606.	3.4	10
110	CER-001 ameliorates lipid profile and kidney disease in a mouse model of familial LCAT deficiency. Metabolism: Clinical and Experimental, 2021, 116, 154464.	3.4	10
111	Interleukin-1 regulates cytokine gene expression in human mesangial cells through the interleukin-1 receptor type 1 Journal of the American Society of Nephrology: JASN, 1992, 2, 1709-1715.	6.1	10
112	Post-translational modifications by SIRT3 de-2-hydroxyisobutyrylase activity regulate glycolysis and enable nephrogenesis. Scientific Reports, 2021, 11, 23580.	3.3	10
113	Simplified Method to Measure Glomerular Filtration Rate by Iohexol Plasma Clearance in Conscious Rats. Nephron, 2016, 133, 62-70.	1.8	9
114	Abnormalities in arachidonic acid metabolites in nephrotoxic glomerular injury. Toxicology Letters, 1989, 46, 65-75.	0.8	8
115	ADAMTS13 Deficiency Shortens the Life Span of Mice With Experimental Diabetes. Diabetes, 2018, 67, 2069-2083.	0.6	8
116	Oral zeranol shortens the prolonged bleeding time of uremic rats. Kidney International, 1990, 38, 96-100.	5.2	5
117	Genetics of rare diseases of the kidney: learning from mouse models. Cytogenetic and Genome Research, 2004, 105, 479-484.	1.1	5
118	Characterization of a Rat Model of Myeloperoxidase-Anti-Neutrophil Cytoplasmic Antibody-Associated Crescentic Glomerulonephritis. Nephron, 2021, 145, 428-444.	1.8	5
119	Turnour necrosis factor stimulates endothelin-1 gene expression in cultured bovine endothelial cells. Mediators of Inflammation, 1992, 1, 263-266.	3.0	4
120	Lack of synergism between dazoxiben and dipyridamole following administration to man. Thrombosis Research, 1985, 37, 231-236.	1.7	3
121	The effect of caloric restriction on a rat model of aging: Biological, pathological, biochemical and behavioral characterization. Aging Clinical and Experimental Research, 1991, 3, 388-390.	2.9	3
122	Interleukin-1 and Glomerular Mesangial Cells. Kidney and Blood Pressure Research, 1993, 16, 89-92.	2.0	3
123	Interleukin-6 stimulates gene expression of extracellular matrix components in bovine mesangial cells in culture. Mediators of Inflammation, 1993, 2, 429-433.	3.0	3
124	Shiga Toxin 2 Triggers C3a-Dependent Glomerular and Tubular Injury through Mitochondrial Dysfunction in Hemolytic Uremic Syndrome. Cells, 2022, 11, 1755.	4.1	3
125	A Study of Low-Nutrient Diets Used for Aging Studies in the Rat. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 1996, 51A, B270-B275.	3.6	2
126	Therapeutic Small Interfering RNA Targeting Complement C3 in a Mouse Model of C3 Glomerulopathy. Journal of Immunology, 2022, 208, 1772-1781.	0.8	2

#	Article	IF	CITATIONS
127	Reduced Fibrinolytic Activity in Glomeruli Isolated from Rabbits Infused with Tumor Necrosis Factor. Pathophysiology of Haemostasis and Thrombosis: International Journal on Haemostasis and Thrombosis Research, 1993, 23, 173-178.	0.3	1
128	Protective Effects of Human Nonrenal and Renal Stromal Cells and Their Conditioned Media in a Rat Model of Chronic Kidney Disease. Cell Transplantation, 2020, 29, 096368972096546.	2.5	1