
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8380869/publications.pdf Version: 2024-02-01



Ιινγία Γιμ

| #  | Article                                                                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Reduced bioaccumulation of fluorotelomer sulfonates and perfluoroalkyl acids in earthworms<br>(Eisenia fetida) from soils amended with modified clays. Journal of Hazardous Materials, 2022, 423,<br>126999.                                                                    | 12.4 | 6         |
| 2  | Target and Nontarget Screening of PFAS in Biosolids, Composts, and Other Organic Waste Products for Land Application in France. Environmental Science & Technology, 2022, 56, 6056-6068.                                                                                        | 10.0 | 70        |
| 3  | Novel and legacy per- and polyfluoroalkyl substances (PFAS) in freshwater sporting fish from<br>background and firefighting foam impacted ecosystems in Eastern Canada. Science of the Total<br>Environment, 2022, 816, 151563.                                                 | 8.0  | 17        |
| 4  | Microbial biotransformation of aqueous film-forming foam derived polyfluoroalkyl substances.<br>Science of the Total Environment, 2022, 824, 153711.                                                                                                                            | 8.0  | 20        |
| 5  | Fish Exhibit Distinct Fluorochemical and δ15N Isotopic Signatures in the St. Lawrence River Impacted by<br>Municipal Wastewater Effluents. Frontiers in Environmental Science, 2022, 10, .                                                                                      | 3.3  | 2         |
| 6  | <scp>PFAS</scp> are forever? The state of the science and research needs for analyzing and treating<br><scp>PFAS</scp> â€laden water. AWWA Water Science, 2022, 4, .                                                                                                            | 2.1  | 3         |
| 7  | Per- and Polyfluoroalkyl Substances in Contaminated Soil and Groundwater at Airports: A Canadian<br>Case Study. Environmental Science & Technology, 2022, 56, 885-895.                                                                                                          | 10.0 | 47        |
| 8  | Removal of Zwitterionic PFAS by MXenes: Comparisons with Anionic, Nonionic, and PFAS-Specific Resins. Environmental Science & amp; Technology, 2022, 56, 6212-6222.                                                                                                             | 10.0 | 21        |
| 9  | Bioaccumulation and trophic magnification of emerging and legacy per- and polyfluoroalkyl substances (PFAS) in a St. Lawrence River food web. Environmental Pollution, 2022, 309, 119739.                                                                                       | 7.5  | 35        |
| 10 | Stability of Nitrogen-Containing Polyfluoroalkyl Substances in Aerobic Soils. Environmental Science<br>& Technology, 2021, 55, 4698-4708.                                                                                                                                       | 10.0 | 34        |
| 11 | Fate and transport of per- and polyfluoroalkyl substances (PFASs) in the vadose zone. Science of the<br>Total Environment, 2021, 771, 145427.                                                                                                                                   | 8.0  | 69        |
| 12 | Environmental Sources, Chemistry, Fate, and Transport of Per―and Polyfluoroalkyl Substances: State of the Science, Key Knowledge Gaps, and Recommendations Presented at the August 2019 SETAC Focus Topic Meeting. Environmental Toxicology and Chemistry, 2021, 40, 3234-3260. | 4.3  | 49        |
| 13 | STXM-XANES and computational investigations of adsorption of per- and polyfluoroalkyl substances on modified clay. Water Research, 2021, 201, 117371.                                                                                                                           | 11.3 | 22        |
| 14 | Modified clays reduce leaching of per―and polyfluoroalkyl substances from<br><scp>AFFF</scp> â€contaminated soils. AWWA Water Science, 2021, 3, e1241.                                                                                                                          | 2.1  | 6         |
| 15 | A portable analytical system for rapid on-site determination of total nitrogen in water. Water<br>Research, 2021, 202, 117410.                                                                                                                                                  | 11.3 | 12        |
| 16 | Assessing the risk from trace organic contaminants released via greywater irrigation to the aquatic environment. Water Research, 2021, 205, 117664.                                                                                                                             | 11.3 | 13        |
| 17 | Enhancing Interface Reactions by Introducing Microbubbles into a Plasma Treatment Process for<br>Efficient Decomposition of PFOA. Environmental Science & Technology, 2021, 55, 16067-16077.                                                                                    | 10.0 | 69        |
| 18 | Density Functional Theory Calculations Decipher Complex Reaction Pathways of 6:2 Fluorotelomer<br>Sulfonate to Perfluoroalkyl Carboxylates Initiated by Hydroxyl Radical. Environmental Science &<br>Technology, 2021, 55, 16655-16664.                                         | 10.0 | 21        |

| #  | Article                                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Molecular mechanisms of per- and polyfluoroalkyl substances on a modified clay: a combined experimental and molecular simulation study. Water Research, 2020, 184, 116166.                                                               | 11.3 | 62        |
| 20 | Fast Generation of Perfluoroalkyl Acids from Polyfluoroalkyl Amine Oxides in Aerobic Soils.<br>Environmental Science and Technology Letters, 2020, 7, 714-720.                                                                           | 8.7  | 26        |
| 21 | Occurrence and Distribution of Per- and Polyfluoroalkyl Substances in Tianjin, China: The<br>Contribution of Emerging and Unknown Analogues. Environmental Science & Technology, 2020,<br>54, 14254-14264.                               | 10.0 | 85        |
| 22 | Transformation of 6:2 Fluorotelomer Sulfonate by Cobalt(II)-Activated Peroxymonosulfate.<br>Environmental Science & Technology, 2020, 54, 4631-4640.                                                                                     | 10.0 | 49        |
| 23 | Sorption of Polyfluoroalkyl Surfactants on Surface Soils: Effect of Molecular Structures, Soil<br>Properties, and Solution Chemistry. Environmental Science & Technology, 2020, 54, 1513-1521.                                           | 10.0 | 80        |
| 24 | Bioaccumulation of Zwitterionic Polyfluoroalkyl Substances in Earthworms Exposed to Aqueous<br>Film-Forming Foam Impacted Soils. Environmental Science & Technology, 2020, 54, 1687-1697.                                                | 10.0 | 31        |
| 25 | Degradation and defluorination of 6:2 fluorotelomer sulfonamidoalkyl betaine and 6:2<br>fluorotelomer sulfonate by Gordonia sp. strain NB4-1Y under sulfur-limiting conditions. Science of<br>the Total Environment, 2019, 647, 690-698. | 8.0  | 115       |
| 26 | New Insights into the Degradation Mechanism of Perfluorooctanoic Acid by Persulfate from Density<br>Functional Theory and Experimental Data. Environmental Science & Technology, 2019, 53, 8672-8681.                                    | 10.0 | 91        |
| 27 | Column chromatography approach to determine mobility of fluorotelomer sulfonates and polyfluoroalkyl betaines. Science of the Total Environment, 2019, 683, 480-488.                                                                     | 8.0  | 14        |
| 28 | Analysis of F-53B, Gen-X, ADONA, and emerging fluoroalkylether substances in environmental and biomonitoring samples: A review. Trends in Environmental Analytical Chemistry, 2019, 23, e00066.                                          | 10.3 | 123       |
| 29 | Transformation of novel polyfluoroalkyl substances (PFASs) as co-contaminants during biopile<br>remediation of petroleum hydrocarbons. Journal of Hazardous Materials, 2019, 362, 140-147.                                               | 12.4 | 43        |
| 30 | Zwitterionic, cationic, and anionic perfluoroalkyl and polyfluoroalkyl substances integrated into total oxidizable precursor assay of contaminated groundwater. Talanta, 2019, 195, 533-542.                                             | 5.5  | 111       |
| 31 | Isomer-specific biotransformation of perfluoroalkyl sulfonamide compounds in aerobic soil. Science of the Total Environment, 2019, 651, 766-774.                                                                                         | 8.0  | 34        |
| 32 | Degradation of aniline in aqueous solution using non-thermal plasma generated in microbubbles.<br>Chemical Engineering Journal, 2018, 345, 679-687.                                                                                      | 12.7 | 120       |
| 33 | Sorption of Perfluoroalkyl Acids to Fresh and Aged Nanoscale Zerovalent Iron Particles.<br>Environmental Science & Technology, 2018, 52, 6300-6308.                                                                                      | 10.0 | 37        |
| 34 | Sorption and desorption of anionic, cationic and zwitterionic polyfluoroalkyl substances by soil<br>organic matter and pyrogenic carbonaceous materials. Chemical Engineering Journal, 2018, 346,<br>682-691.                            | 12.7 | 70        |
| 35 | Worldwide drinking water occurrence and levels of newly-identified perfluoroalkyl and polyfluoroalkyl substances. Science of the Total Environment, 2018, 616-617, 1089-1100.                                                            | 8.0  | 202       |
| 36 | Remediation of soil contaminated by fluorene using needle-plate pulsed corona discharge plasma.<br>Chemical Engineering Journal, 2018, 334, 2124-2133.                                                                                   | 12.7 | 50        |

| #  | Article                                                                                                                                                                                                                                                                                            | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Zürich Statement on Future Actions on Per- and Polyfluoroalkyl Substances (PFASs). Environmental<br>Health Perspectives, 2018, 126, 84502.                                                                                                                                                         | 6.0  | 91        |
| 38 | Degradation of Phenol in Water Using a Novel Gas-Liquid Two-Phase Dielectric Barrier Discharge<br>Plasma Reactor. Water, Air, and Soil Pollution, 2018, 229, 1.                                                                                                                                    | 2.4  | 15        |
| 39 | Optimization of extraction methods for comprehensive profiling of perfluoroalkyl and<br>polyfluoroalkyl substances in firefighting foam impacted soils. Analytica Chimica Acta, 2018, 1034,<br>74-84.                                                                                              | 5.4  | 63        |
| 40 | Assessment of the Influence of Soil Characteristics and Hydrocarbon Fuel Cocontamination on the<br>Solvent Extraction of Perfluoroalkyl and Polyfluoroalkyl Substances. Analytical Chemistry, 2017, 89,<br>2539-2546.                                                                              | 6.5  | 46        |
| 41 | Environmental Occurrence of Perfluoroalkyl Acids and Novel Fluorotelomer Surfactants in the Freshwater Fish <i>Catostomus commersonii</i> and Sediments Following Firefighting Foam Deployment at the Lac-Mégantic Railway Accident. Environmental Science & amp; Technology, 2017, 51, 1231-1240. | 10.0 | 97        |
| 42 | Kinetic analysis of aerobic biotransformation pathways of a perfluorooctane sulfonate (PFOS) precursor in distinctly different soils. Environmental Pollution, 2017, 229, 159-167.                                                                                                                 | 7.5  | 38        |
| 43 | Novel Fluoroalkylated Surfactants in Soils Following Firefighting Foam Deployment During the<br>Lac-Mégantic Railway Accident. Environmental Science & Technology, 2017, 51, 8313-8323.                                                                                                            | 10.0 | 98        |
| 44 | Generation of Perfluoroalkyl Acids from Aerobic Biotransformation of Quaternary Ammonium<br>Polyfluoroalkyl Surfactants. Environmental Science & Technology, 2016, 50, 9923-9932.                                                                                                                  | 10.0 | 118       |
| 45 | Aerobic biotransformation of polyfluoroalkyl phosphate esters (PAPs) in soil. Environmental<br>Pollution, 2016, 212, 230-237.                                                                                                                                                                      | 7.5  | 77        |
| 46 | Analysis of zwitterionic, cationic, and anionic poly- and perfluoroalkyl surfactants in sediments by<br>liquid chromatography polarity-switching electrospray ionization coupled to high resolution mass<br>spectrometry. Talanta, 2016, 152, 447-456.                                             | 5.5  | 82        |
| 47 | Surface modification of activated carbon for enhanced adsorption of perfluoroalkyl acids from aqueous solutions. Chemosphere, 2016, 144, 1224-1232.                                                                                                                                                | 8.2  | 67        |
| 48 | A Fast Colourimetric Assay for Lead Detection Using Label-Free Gold Nanoparticles (AuNPs).<br>Micromachines, 2015, 6, 462-472.                                                                                                                                                                     | 2.9  | 21        |
| 49 | Quantitative analysis of poly- and perfluoroalkyl compounds in water matrices using high resolution<br>mass spectrometry: Optimization for a laser diode thermal desorption method. Analytica Chimica Acta,<br>2015, 881, 98-106.                                                                  | 5.4  | 40        |
| 50 | Adsorption of perfluoroalkyl acids by carbonaceous adsorbents: Effect of carbon surface chemistry.<br>Environmental Pollution, 2015, 202, 168-176.                                                                                                                                                 | 7.5  | 72        |
| 51 | Comment on "Biodegradation of perfluorooctanesulfonate (PFOS) as an emerging contaminantâ€.<br>Chemosphere, 2015, 138, 1037-1038.                                                                                                                                                                  | 8.2  | 12        |
| 52 | Production of PFOS from aerobic soil biotransformation of two perfluoroalkyl sulfonamide<br>derivatives. Chemosphere, 2015, 119, 1084-1090.                                                                                                                                                        | 8.2  | 146       |
| 53 | A portable lab-on-a-chip system for gold-nanoparticle-based colorimetric detection of metal ions in water. Biomicrofluidics, 2014, 8, 052107.                                                                                                                                                      | 2.4  | 33        |
| 54 | Microbial degradation of polyfluoroalkyl chemicals in the environment: A review. Environment<br>International, 2013, 61, 98-114.                                                                                                                                                                   | 10.0 | 354       |

| #  | Article                                                                                                                                                   | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Aerobic Soil Biodegradation of 8:2 Fluorotelomer Stearate Monoester. Environmental Science &<br>Technology, 2012, 46, 3831-3836.                          | 10.0 | 55        |
| 56 | 6:2 Fluorotelomer sulfonate aerobic biotransformation in activated sludge of waste water treatment plants. Chemosphere, 2011, 82, 853-858.                | 8.2  | 234       |
| 57 | Hydrolysis of fluorotelomer compounds leading to fluorotelomer alcohol production during solvent extractions of soils. Chemosphere, 2010, 81, 911-917.    | 8.2  | 18        |
| 58 | 6-2 Fluorotelomer alcohol aerobic biodegradation in soil and mixed bacterial culture. Chemosphere, 2010, 78, 437-444.                                     | 8.2  | 157       |
| 59 | Aerobic biodegradation of [14C] 6:2 fluorotelomer alcohol in a flow-through soil incubation system.<br>Chemosphere, 2010, 80, 716-723.                    | 8.2  | 70        |
| 60 | Effect of Fluorotelomer Alcohol Chain Length on Aqueous Solubility and Sorption by Soils.<br>Environmental Science & Technology, 2007, 41, 5357-5362.     | 10.0 | 62        |
| 61 | Biotransformation of 8:2 Fluorotelomer Alcohol in Soil and by Soil Bacteria Isolates. Environmental<br>Science & Technology, 2007, 41, 8024-8030.         | 10.0 | 120       |
| 62 | Adhesion ofPseudomonas fluorescensonto nanophase materials. Nanotechnology, 2005, 16, S449-S457.                                                          | 2.6  | 18        |
| 63 | Solubility and Sorption by Soils of 8:2 Fluorotelomer Alcohol in Water and Cosolvent Systems.<br>Environmental Science & Technology, 2005, 39, 7535-7540. | 10.0 | 75        |