
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/838078/publications.pdf Version: 2024-02-01

Ι ΛΙΙΡΛ ΟΛΤΤΙ

#	Article	IF	CITATIONS
1	Caffeic acid phenethyl ester targets ubiquitin-specific protease 8 and synergizes with cisplatin in endometrioid ovarian carcinoma cells. Biochemical Pharmacology, 2022, 197, 114900.	4.4	5
2	Cognitive aspects of MELAS and CARASAL. Cerebral Circulation - Cognition and Behavior, 2022, 3, 100139.	0.9	0
3	The Lipid Asset Is Unbalanced in Peripheral Nerve Sheath Tumors. International Journal of Molecular Sciences, 2022, 23, 61.	4.1	2
4	Novel Multifaceted Roles for RNF213 Protein. International Journal of Molecular Sciences, 2022, 23, 4492.	4.1	21
5	Lipid Metabolism and Signaling in Tumors and Cerebrovascular Diseases. International Journal of Molecular Sciences, 2022, 23, 6280.	4.1	0
6	Deregulated FASN Expression in BRAF Inhibitor-Resistant Melanoma Cells Unveils New Targets for Drug Combinations. Cancers, 2021, 13, 2284.	3.7	13
7	Characteristics of Moyamoya Disease in the Older Population: Is It Possible to Define a Typical Presentation and Optimal Therapeutical Management?. Journal of Clinical Medicine, 2021, 10, 2287.	2.4	6
8	RNF213 variant in a patient with Legius syndrome associated with moyamoya syndrome. Molecular Genetics & Genomic Medicine, 2021, 9, e1669.	1.2	3
9	Clinical Management of Moyamoya Patients. Journal of Clinical Medicine, 2021, 10, 3628.	2.4	17
10	Plasma Lipid Profiling Contributes to Untangle the Complexity of Moyamoya Arteriopathy. International Journal of Molecular Sciences, 2021, 22, 13410.	4.1	11
11	Synergistic Interaction of Histone Deacetylase 6- and MEK-Inhibitors in Castration-Resistant Prostate Cancer Cells. Frontiers in Cell and Developmental Biology, 2020, 8, 610.	3.7	11
12	Vascular Remodeling in Moyamoya Angiopathy: From Peripheral Blood Mononuclear Cells to Endothelial Cells. International Journal of Molecular Sciences, 2020, 21, 5763.	4.1	15
13	Understanding the Pathophysiology of Cerebral Amyloid Angiopathy. International Journal of Molecular Sciences, 2020, 21, 3435.	4.1	39
14	Discovering the Italian phenotype of cerebral amyloid angiopathy (CAA): the SENECA project. Neurological Sciences, 2020, 41, 2193-2200.	1.9	3
15	PGE2 Is Crucial for the Generation of FAST Whole- Tumor-Antigens Loaded Dendritic Cells Suitable for Immunotherapy in Glioblastoma. Pharmaceutics, 2020, 12, 215.	4.5	4
16	Abstract 1899: Extracellular lipid starvation modulates the effects of BRAF inhibitors in melanoma. , 2020, , .		0
17	AXL Downstream Targeting Unravels Synergistic Drug Combinations in Ovarian Carcinoma Cells. Anticancer Research, 2019, 39, 3803-3808.	1.1	1
18	Microfragmented human fat tissue is a natural scaffold for drug delivery: Potential application in cancer chemotherapy. Journal of Controlled Release, 2019, 302, 2-18.	9.9	26

#	Article	IF	CITATIONS
19	Analysis of determinants for in vitro resistance to the small molecule deubiquitinase inhibitor b-AP15. PLoS ONE, 2019, 14, e0223807.	2.5	8
20	Cooperate or not cooperate <scp>EEG</scp> , autonomic, and behavioral correlates of ineffective joint strategies. Brain and Behavior, 2018, 8, e00902.	2.2	14
21	EEG functional connectivity and brain-to-brain coupling in failing cognitive strategies. Consciousness and Cognition, 2018, 60, 86-97.	1.5	16
22	Functional brain connectivity when cooperation fails. Brain and Cognition, 2018, 123, 65-73.	1.8	17
23	When cooperation goes wrong: brain and behavioural correlates of ineffective joint strategies in dyads. International Journal of Neuroscience, 2018, 128, 155-166.	1.6	19
24	FoxO-1 contributes to the efficacy of the combination of the XPO1 inhibitor selinexor and cisplatin in ovarian carcinoma preclinical models. Biochemical Pharmacology, 2018, 147, 93-103.	4.4	34
25	May the Best Joint-Actions Win: Physiological Linkage During Competition. Applied Psychophysiology Biofeedback, 2018, 43, 227-237.	1.7	6
26	Axl molecular targeting counteracts aggressiveness but not platinum-resistance of ovarian carcinoma cells. Biochemical Pharmacology, 2017, 136, 40-50.	4.4	16
27	Overcoming ABC transporter-mediated multidrug resistance: The dual role of tyrosine kinase inhibitors as multitargeting agents. European Journal of Medicinal Chemistry, 2017, 142, 271-289.	5.5	167
28	Affective Synchrony and Autonomic Coupling during Cooperation: A Hyperscanning Study. BioMed Research International, 2017, 2017, 1-9.	1.9	36
29	Editorial (Thematic Issue : Revisiting Drug-DNA Interaction: Novel Molecules and Applications in) Tj ETQq1 1 0.78	84314 rgB⊺ 1.9	[/&verlock]
30	When brains dialogue by synchronized or unsynchronized languages.Hyperscanning applications to neuromanagement. Neuropsychological Trends (discontinued), 2017, , 35-51.	0.6	18
31	Abstract 1070: Role of FOXO1 in response of ovarian carcinoma cells to the XPO1/CRM1 inhibitor KPT-330/selinexor in combination with cisplatin. , 2017, , .		0
32	Targeting ErbB3 activation in drug-resistant ovarian carcinoma cells over-expressing the receptor tyrosine kinase Axl. European Journal of Cancer, 2016, 69, S71-S72.	2.8	0
33	PKC-alpha modulation by miR-483-3p in platinum-resistant ovarian carcinoma cells. Toxicology and Applied Pharmacology, 2016, 310, 9-19.	2.8	33
34	Targeting Peptidyl-Prolyl Isomerase Pin1 to Inhibit Tumor Cell Aggressiveness. Tumori, 2016, 102, 144-149.	1.1	4
35	Strategies to Strike Survival Networks in Cancer. Critical Reviews in Oncogenesis, 2016, 21, 269-308.	0.4	6
36	Role of the Receptor Tyrosine Kinase Axl and its Targeting in Cancer Cells. Current Medicinal Chemistry, 2016, 23, 1496-1512.	2.4	31

#	Article	IF	CITATIONS
37	Microenvironment-Modulated Metastatic CD133+/CXCR4+/EpCAMâ^' Lung Cancer–Initiating Cells Sustain Tumor Dissemination and Correlate with Poor Prognosis. Cancer Research, 2015, 75, 3636-3649.	0.9	83
38	New mechanisms for old drugs: Insights into DNA-unrelated effects of platinum compounds and drug resistance determinants. Drug Resistance Updates, 2015, 20, 1-11.	14.4	47
39	Targeting the invasive phenotype of cisplatin-resistant Non-Small Cell Lung Cancer cells by a novel histone deacetylase inhibitor. Biochemical Pharmacology, 2015, 94, 79-90.	4.4	22
40	Orchestration of DSB repair: a novel BRCA2 connection. Cell Cycle, 2015, 14, 1-2.	2.6	8
41	Nucleolar Targeting by Platinum: p53-Independent Apoptosis Follows rRNA Inhibition, Cell-Cycle Arrest, and DNA Compaction. Molecular Pharmaceutics, 2015, 12, 287-297.	4.6	34
42	Drug Combinations with HDAC Inhibitors in Antitumor Therapy. Critical Reviews in Oncogenesis, 2015, 20, 83-117.	0.4	21
43	Abstract B18: Association between apoptotic response and KiSS1 modulation in NSCLC preclinical models treated with SAHA and cisplatin. , 2015, , .		0
44	Histone deacetylase inhibitor-temozolomide co-treatment inhibits melanoma growth through suppression of Chemokine (C-C motif) ligand 2-driven signals. Oncotarget, 2014, 5, 4516-4528.	1.8	29
45	Antitumor Activity of a Novel Homodimeric SMAC Mimetic in Ovarian Carcinoma. Molecular Pharmaceutics, 2014, 11, 283-293.	4.6	17
46	Improved Apoptotic Cell Death in Drug-Resistant Non–Small-Cell Lung Cancer Cells by Tumor Necrosis Factor–Related Apoptosis-Inducing Ligand–Based Treatment. Journal of Pharmacology and Experimental Therapeutics, 2014, 348, 360-371.	2.5	26
47	Differential outcome of MEK1/2 inhibitor-platinum combinations in platinum-sensitive and -resistant ovarian carcinoma cells. Cancer Letters, 2014, 347, 212-224.	7.2	26
48	Clinicopathological Impact of ABCC1/MRP1 and ABCC4/MRP4 in Epithelial Ovarian Carcinoma. BioMed Research International, 2013, 2013, 1-7.	1.9	43
49	Modulation of Sensitivity to Antitumor Agents by Targeting the MAPK Survival Pathway. Current Pharmaceutical Design, 2013, 19, 883-894.	1.9	47
50	Camptothecin Resistance in Cancer: Insights into the Molecular Mechanisms of a DNA-Damaging Drug. Current Medicinal Chemistry, 2013, 20, 1541-1565.	2.4	75
51	Targeting the Akt Kinase to Modulate Survival, Invasiveness and Drug Resistance of Cancer Cells. Current Medicinal Chemistry, 2013, 20, 1923-1945.	2.4	86
52	Drug Combinations with Proteasome Inhibitors in Antitumor Therapy. Current Pharmaceutical Design, 2013, 19, 4094-4114.	1.9	16
53	Abstract A93: Targeting the increased invasive capability of non-small cell lung cancer platinum-resistant cells by histone deacetylase inhibitors , 2013, , .		0
54	Modulation of sensitivity to antitumor agents by targeting the MAPK survival pathway. Current Pharmaceutical Design, 2013, 19, 883-94.	1.9	29

#	Article	IF	CITATIONS
55	Synergistic interaction between the novel histone deacetylase inhibitor ST2782 and the proteasome inhibitor bortezomib in platinum-sensitive and resistant ovarian carcinoma cells. Journal of Inorganic Biochemistry, 2012, 113, 94-101.	3.5	7
56	Role of tyrosyl-DNA phosphodiesterase 1 and inter-players in regulation of tumor cell sensitivity to to topoisomerase I inhibition. Biochemical Pharmacology, 2012, 83, 27-36.	4.4	36
57	Sensitization of tumor cells by targeting histone deacetylases. Biochemical Pharmacology, 2012, 83, 987-994.	4.4	29
58	Modulation of Sensitivity to Antitumor Agents by Targeting the MAPK Survival Pathway. Current Pharmaceutical Design, 2012, 19, 883-894.	1.9	23
59	Ubiquitin-proteasome genes as targets for modulation of cisplatin sensitivity in fission yeast. BMC Genomics, 2011, 12, 44.	2.8	20
60	Novel Insights into Targeting ATP-Binding Cassette Transporters for Antitumor Therapy. Current Medicinal Chemistry, 2011, 18, 4237-4249.	2.4	34
61	Abstract C34: Synergistic interaction between a novel histone deacetylase inhibitor and the proteasome inhibitor bortezomib in platinum-resistant ovarian carcinoma cells , 2011, , .		0
62	Increased levels and defective glycosylation of MRPs in ovarian carcinoma cells resistant to oxaliplatin. Biochemical Pharmacology, 2010, 79, 1108-1117.	4.4	93
63	The ABC of glycosylation. Nature Reviews Cancer, 2010, 10, 523-523.	28.4	27
64	The "stem―of chemoresistance. Cell Cycle, 2010, 9, 628-629.	2.6	11
65	Tyrosyl-DNA Phosphodiesterase 1 Targeting for Modulation of Camptothecin-Based Treatment. Current Medicinal Chemistry, 2010, 17, 1500-1508.	2.4	47
66	Novel Bis-platinum Complexes Endowed with an Improved Pharmacological Profile. Molecular Pharmaceutics, 2010, 7, 207-216.	4.6	18
67	Simultaneous confidence intervals to compare gene expression profiles using ABC transporter TaqMan microfluidic cards. Oncology Reports, 2010, 23, 853-60.	2.6	8
68	Strategies to Improve the Efficacy of Platinum Compounds. Current Medicinal Chemistry, 2009, 16, 2355-2365.	2.4	54
69	ABC Transporters as Potential Targets for Modulation of Drug Resistance. Mini-Reviews in Medicinal Chemistry, 2009, 9, 1102-1112.	2.4	42
70	Highly tumorigenic lung cancer CD133 ⁺ cells display stem-like features and are spared by cisplatin treatment. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 16281-16286.	7.1	733
71	Cellular Resistance to Oxaliplatin and Drug Accumulation Defects. , 2009, , 115-124.		4
72	Abstract A59: Increased expression of ABC transporter genes in lung cancer CD133â€positive cells. , 2009, , .		0

5

LAURA GATTI

#	Article	IF	CITATIONS
73	Defining targets of modulation of human tumor cell response to cisplatin. Journal of Inorganic Biochemistry, 2008, 102, 1406-1415.	3.5	5
74	A proteomic approach for evaluating the cell response to a novel histone deacetylase inhibitor in colon cancer cells. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2008, 1784, 1702-1710.	2.3	14
75	The human homolog of fission yeast Rad17 is implicated in tumor growth. Cancer Letters, 2008, 266, 194-202.	7.2	3
76	Eradication of Ovarian Tumor Xenografts by Locoregional Administration of Targeted Immunotherapy. Clinical Cancer Research, 2008, 14, 5512-5518.	7.0	23
77	Small Molecules Targeting p53 to Improve Antitumor Therapy. Mini-Reviews in Medicinal Chemistry, 2008, 8, 856-868.	2.4	10
78	Modulation of cell growth and cisplatin sensitivity by membrane Î ³ -glutamyltransferase in melanoma cells. European Journal of Cancer, 2006, 42, 2623-2630.	2.8	69
79	Cellular Sensitivity to β-Diketonato Complexes of Ruthenium(III), Chromium(III) and Rhodium(III). Medicinal Chemistry, 2006, 2, 227-237.	1.5	7
80	Sensitization to gimatecan-induced apoptosis by tumor necrosis factor-related apoptosis inducing ligand in prostate carcinoma cells. Biochemical Pharmacology, 2006, 71, 791-798.	4.4	15
81	Overview of Tumor Cell Chemoresistance Mechanisms. , 2005, 111, 127-148.		109
82	Cellular pharmacology of cisplatin in relation to the expression of human copper transporter CTR1 in different pairs of cisplatin-sensitive and -resistant cells. Biochemical Pharmacology, 2004, 68, 283-291.	4.4	76
83	Gene expression profiles in the cellular response to a multinuclear platinum complexe. Cellular and Molecular Life Sciences, 2004, 61, 973-981.	5.4	14
84	Global gene expression of fission yeast in response to cisplatin. Cellular and Molecular Life Sciences, 2004, 61, 2253-63.	5.4	21
85	Cellular bases of the antitumor activity of a 7-substituted camptothecin in hormone-refractory human prostate carcinoma models. Biochemical Pharmacology, 2003, 65, 1281-1294.	4.4	16
86	Development of resistance to a trinuclear platinum complex in ovarian carcinoma cells. International Journal of Cancer, 2003, 105, 617-624.	5.1	44
87	Mechanisms Controlling Sensitivity to Platinum Complexes: Role of p53 and DNA Mismatch Repair. Current Cancer Drug Targets, 2003, 3, 21-29.	1.6	79
88	Identification of Determinants of Sensitivity to Antitumor Drugs. , 2003, , 319-330.		3
89	Expression of the anti-apoptotic gene survivin correlates with taxol resistance in human ovarian cancer. Cellular and Molecular Life Sciences, 2002, 59, 1406-1412.	5.4	246
90	Apoptosis and growth arrest induced by platinum compounds in U2-OS cells reflect a specific DNA damage recognition associated with a different p53-mediated response. Cell Death and Differentiation, 2002, 9, 1352-1359.	11.2	41

#	Article	IF	CITATIONS
91	A role for c-myc in DNA damage-induced apoptosis in a human TP53-mutant small-cell lung cancer cell line. European Journal of Cancer, 2001, 37, 2247-2256.	2.8	21
92	Role of Apoptosis and Apoptosis-Related Genes in Cellular Response and Antitumor Efficacy of Anthracyclines. Current Medicinal Chemistry, 2001, 8, 31-37.	2.4	73
93	Apoptosis induced by extracellular glutathione is mediated by H2O2 production and DNA damage. International Journal of Cancer, 2000, 87, 343-348.	5.1	19
94	p53 Gene Status and Response to Platinum/Paclitaxel-Based Chemotherapy in Advanced Ovarian Carcinoma. Journal of Clinical Oncology, 2000, 18, 3936-3945.	1.6	136
95	The cellular basis of the efficacy of the trinuclear platinum complex BBR 3464 against cisplatin-resistant cells. Journal of Inorganic Biochemistry, 1999, 77, 59-64.	3.5	71
96	Targeting of the Lipid Metabolism Impairs Resistance to BRAF Kinase Inhibitor in Melanoma. Frontiers in Cell and Developmental Biology, 0, 10, .	3.7	10