Kathryn J Moore

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8380552/publications.pdf

Version: 2024-02-01

8172 5986 32,184 166 76 160 citations h-index g-index papers 169 169 169 35221 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Rapid neutrophil mobilization by VCAM-1+ endothelial cell-derived extracellular vesicles. Cardiovascular Research, 2023, 119, 236-251.	1.8	22
2	Reverse cardio-oncology: Exploring the effects of cardiovascular disease on cancer pathogenesis. Journal of Molecular and Cellular Cardiology, 2022, 163 , 1 -8.	0.9	32
3	A Qualitative Study Focused on Maternity Care Professionals' Perspectives on the Challenges of Providing Care During the COVID-19 Pandemic. Journal of Perinatal and Neonatal Nursing, 2022, 36, 46-54.	0.5	7
4	OUP accepted manuscript. European Heart Journal, 2022, , .	1.0	1
5	Shobha Ghosh (1958–2021). Arteriosclerosis, Thrombosis, and Vascular Biology, 2022, 42, 239-240.	1.1	O
6	The Liver X Receptor Is Selectively Modulated to Differentially Alter Female Mammary Metastasis-associated Myeloid Cells. Endocrinology, 2022, 163, .	1.4	5
7	miR-33 Silencing Reprograms the Immune Cell Landscape in Atherosclerotic Plaques. Circulation Research, 2021, 128, 1122-1138.	2.0	27
8	MicroRNA-33 Inhibits Adaptive Thermogenesis and Adipose Tissue Beiging. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 1360-1373.	1.1	11
9	High-Throughput Screening Identifies MicroRNAs Regulating Human PCSK9 and Hepatic Low-Density Lipoprotein Receptor Expression. Frontiers in Cardiovascular Medicine, 2021, 8, 667298.	1.1	4
10	Silencing Myeloid Netrin-1 Induces Inflammation Resolution and Plaque Regression. Circulation Research, 2021, 129, 530-546.	2.0	25
11	Two birds, one stone: NFATc3 controls dual actions of miR-204 in foam cell formation. European Heart Journal, 2021, , .	1.0	2
12	Chronic stress primes innate immune responses in mice and humans. Cell Reports, 2021, 36, 109595.	2.9	53
13	Mycobacterium tuberculosis Limits Host Glycolysis and IL- $1\hat{l}^2$ by Restriction of PFK-M via MicroRNA-21. Cell Reports, 2020, 30, 124-136.e4.	2.9	97
14	COVID-19 and the Heart and Vasculature. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, 2045-2053.	1.1	25
15	Myocardial infarction accelerates breast cancer via innate immune reprogramming. Nature Medicine, 2020, 26, 1452-1458.	15.2	138
16	A heritable netrin-1 mutation increases atherogenic immune responses. Atherosclerosis, 2020, 301, 82-83.	0.4	1
17	Crosstalk Between the Heart and Cancer. Circulation, 2020, 142, 684-687.	1.6	28
18	Regulatory T Cells License Macrophage Pro-Resolving Functions During Atherosclerosis Regression. Circulation Research, 2020, 127, 335-353.	2.0	130

#	Article	IF	Citations
19	An Eclectic Cast of Cellular Actors Orchestrates Innate Immune Responses in the Mechanisms Driving Obesity and Metabolic Perturbation. Circulation Research, 2020, 126, 1565-1589.	2.0	13
20	Leukocyte Heterogeneity in Adipose Tissue, Including in Obesity. Circulation Research, 2020, 126, 1590-1612.	2.0	44
21	Introduction to the Obesity, Metabolic Syndrome, and CVD Compendium. Circulation Research, 2020, 126, 1475-1476.	2.0	26
22	Enhanced glycolysis and HIF- $1\hat{l}_{\pm}$ activation in adipose tissue macrophages sustains local and systemic interleukin- $1\hat{l}_{\pm}^2$ production in obesity. Scientific Reports, 2020, 10, 5555.	1.6	53
23	Noncoding RNAs in Cardiovascular Disease: Current Knowledge, Tools and Technologies for Investigation, and Future Directions: A Scientific Statement From the American Heart Association. Circulation Genomic and Precision Medicine, 2020, 13, e000062.	1.6	61
24	LDL Receptor Pathway Regulation by miR-224 and miR-520d. Frontiers in Cardiovascular Medicine, 2020, 7, 81.	1.1	13
25	Platelet regulation of myeloid suppressor of cytokine signaling 3 accelerates atherosclerosis. Science Translational Medicine, 2019, 11, .	5.8	85
26	Regulation of Stress Granule Formation by Inflammation, Vascular Injury, and Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 2014-2027.	1.1	36
27	The Long Non-Coding Rna Chromr Regulates Cholesterol Homeostasis In Primates. Atherosclerosis, 2019, 287, e287.	0.4	1
28	Defining Macrophages in the Heart One Cell at a Time. Trends in Immunology, 2019, 40, 179-181.	2.9	4
29	Connecting Transcriptional and Functional Macrophage Heterogeneity in Atherosclerosis. Circulation Research, 2019, 125, 1052-1054.	2.0	2
30	Targeting inflammation in CVD: advances and challenges. Nature Reviews Cardiology, 2019, 16, 74-75.	6.1	29
31	The long noncoding RNA CHROME regulates cholesterol homeostasis in primates. Nature Metabolism, 2019, 1, 98-110.	5.1	104
32	Long non-coding RNAs regulating macrophage functions in homeostasis and disease. Vascular Pharmacology, 2019, 114, 122-130.	1.0	21
33	Single-Cell RNA Sequencing of Visceral Adipose Tissue Leukocytes Reveals that Caloric Restriction Following Obesity Promotes the Accumulation of a Distinct Macrophage Population with Features of Phagocytic Cells. Immunometabolism, 2019, 1, .	0.7	63
34	Netrin-1 Alters Adipose Tissue Macrophage Fate and Function in Obesity. Immunometabolism, 2019, 1, .	0.7	41
35	Cholesterol Efflux Pathways Suppress Inflammasome Activation, NETosis, and Atherogenesis. Circulation, 2018, 138, 898-912.	1.6	208
36	Long noncoding RNAs in lipid metabolism. Current Opinion in Lipidology, 2018, 29, 224-232.	1.2	46

#	Article	IF	Citations
37	Macrophage-derived netrin-1 promotes abdominal aortic aneurysm formation by activating MMP3 in vascular smooth muscle cells. Nature Communications, 2018, 9, 5022.	5.8	109
38	Macrophage Trafficking, Inflammatory Resolution, and Genomics in Atherosclerosis. Journal of the American College of Cardiology, 2018, 72, 2181-2197.	1.2	139
39	Regulation of macrophage immunometabolism in atherosclerosis. Nature Immunology, 2018, 19, 526-537.	7.0	336
40	Molecular Pathways Underlying Cholesterol Homeostasis. Nutrients, 2018, 10, 760.	1.7	97
41	Abstract 027: A Micropeptide Concealed in a Putative Long Non-coding RNA Directs Inflammation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, .	1.1	3
42	Abstract 456: LncRNA CHROME is Increased in Cardiovascular Disease and Regulates Inflammatory Gene Expression. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, .	1.1	1
43	Abstract 583: Targeting of Macrophage Netrin-1 Expression Promotes Plaque Regression and Resolution of Chronic Inflammation in Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, .	1.1	0
44	Abstract 190: Mir-33 Inhibition Alters Monocyte/macrophage Kinetic Processes to Promote Atherosclerotic Plaque Regression. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, .	1.1	0
45	Store-Operated Ca 2+ Entry Controls Induction of Lipolysis and the Transcriptional Reprogramming to Lipid Metabolism. Cell Metabolism, 2017, 25, 698-712.	7.2	131
46	microRNA-33 Regulates Macrophage Autophagy in Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 1058-1067.	1.1	158
47	Vitamin A mediates conversion of monocyte-derived macrophages into tissue-resident macrophages during alternative activation. Nature Immunology, 2017, 18, 642-653.	7.0	131
48	Inflammatory Ly6Chi monocytes and their conversion to M2 macrophages drive atherosclerosis regression. Journal of Clinical Investigation, 2017, 127, 2904-2915.	3.9	266
49	Leishmania amazonensis Engages CD36 to Drive Parasitophorous Vacuole Maturation. PLoS Pathogens, 2016, 12, e1005669.	2.1	45
50	Mycobacterium tuberculosis induces the miR-33 locus to reprogram autophagy and host lipid metabolism. Nature Immunology, 2016, 17, 677-686.	7.0	295
51	Poly(ADP-ribose) Polymerase 1 Represses Liver X Receptor-mediated ABCA1 Expression and Cholesterol Efflux in Macrophages. Journal of Biological Chemistry, 2016, 291, 11172-11184.	1.6	37
52	Modulation of ambient temperature promotes inflammation and initiates atherosclerosis in wild type C57BL/6 mice. Molecular Metabolism, 2016, 5, 1121-1130.	3.0	63
53	Netrinâ€1 and its receptor Unc5b are novel targets for the treatment of inflammatory arthritis. FASEB Journal, 2016, 30, 3835-3844.	0.2	25
54	Monocyte Adhesion and Plaque Recruitment During Atherosclerosis Development Is Regulated by the Adapter Protein Chat-H/SHEP1. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 1791-1801.	1.1	24

#	Article	lF	CITATIONS
55	Immune cell screening of a nanoparticle library improves atherosclerosis therapy. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E6731-E6740.	3.3	95
56	Emerging Roles of PCSK9. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 211-212.	1.1	12
57	MicroRNA Regulation of Atherosclerosis. Circulation Research, 2016, 118, 703-720.	2.0	502
58	IL-19 Halts Progression of Atherosclerotic Plaque, Polarizes, and Increases Cholesterol Uptake and Efflux in Macrophages. American Journal of Pathology, 2016, 186, 1361-1374.	1.9	39
59	miRNA Targeting of Oxysterol-Binding Protein-Like 6 Regulates Cholesterol Trafficking and Efflux. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 942-951.	1.1	62
60	Netrin-1 is highly expressed and required in inflammatory infiltrates in wear particle-induced osteolysis. Annals of the Rheumatic Diseases, 2016, 75, 1706-1713.	0.5	26
61	MicroRNA-33–dependent regulation of macrophage metabolism directs immune cell polarization in atherosclerosis. Journal of Clinical Investigation, 2015, 125, 4334-4348.	3.9	304
62	Macrophage Mitochondrial Energy Status Regulates Cholesterol Efflux and Is Enhanced by Anti-miR33 in Atherosclerosis. Circulation Research, 2015, 117, 266-278.	2.0	158
63	Local Anti-miR Delivery. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 1905-1906.	1.1	6
64	HDL-Mimetic PLGA Nanoparticle To Target Atherosclerosis Plaque Macrophages. Bioconjugate Chemistry, 2015, 26, 443-451.	1.8	127
65	Cholesterol Loading Reprograms the MicroRNA-143/145–Myocardin Axis to Convert Aortic Smooth Muscle Cells to a Dysfunctional Macrophage-Like Phenotype. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 535-546.	1.1	261
66	Netrin-1 Is a Critical Autocrine/Paracrine Factor for Osteoclast Differentiation. Journal of Bone and Mineral Research, 2015, 30, 837-854.	3.1	48
67	LXR-Mediated ABCA1 Expression and Function Are Modulated by High Glucose and PRMT2. PLoS ONE, 2015, 10, e0135218.	1.1	30
68	Commentary on Fatty Acid Wars. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, e8-9.	1.1	18
69	A Regulator of Secretory Vesicle Size, Kelch-Like Protein 12, Facilitates the Secretion of Apolipoprotein B100 and Very-Low-Density Lipoproteinsâ€"Brief Report. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 251-254.	1.1	19
70	Netrin-1 promotes adipose tissue macrophage retention and insulin resistance in obesity. Nature Medicine, 2014, 20, 377-384.	15.2	213
71	miR33 Inhibition Overcomes Deleterious Effects of Diabetes Mellitus on Atherosclerosis Plaque Regression in Mice. Circulation Research, 2014, 115, 759-769.	2.0	96
72	MicroRNA Control of High-Density Lipoprotein Metabolism and Function. Circulation Research, 2014, 114, 183-192.	2.0	73

#	Article	IF	Citations
73	High-Density Lipoproteins Put Out the Fire. Cell Metabolism, 2014, 19, 175-176.	7.2	10
74	Abstract 624: MiR-33 Antagonism Prevents the Progression of Atherosclerosis by Promoting an M2 Macrophage Phenotype. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, .	1.1	0
75	CD36 coordinates NLRP3 inflammasome activation by facilitating intracellular nucleation of soluble ligands into particulate ligands in sterile inflammation. Nature Immunology, 2013, 14, 812-820.	7.0	746
76	Macrophages in atherosclerosis: a dynamic balance. Nature Reviews Immunology, 2013, 13, 709-721.	10.6	1,927
77	Single Step Reconstitution of Multifunctional High-Density Lipoprotein-Derived Nanomaterials Using Microfluidics. ACS Nano, 2013, 7, 9975-9983.	7.3	104
78	microRNAs: small regulators with a big impact on lipid metabolism. Journal of Lipid Research, 2013, 54, 1159-1160.	2.0	18
79	IL-1 signaling in atherosclerosis: sibling rivalry. Nature Immunology, 2013, 14, 1030-1032.	7.0	49
80	Small RNA Overcomes the Challenges of Therapeutic Targeting of Microsomal Triglyceride Transfer Protein. Circulation Research, 2013, 113, 1189-1191.	2.0	17
81	Heat shock protein-27 attenuates foam cell formation and atherogenesis by down-regulating scavenger receptor-A expression via NF-κB signaling. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2013, 1831, 1721-1728.	1.2	26
82	The Semaphorin 3E/PlexinD1 Axis Regulates Macrophage Inflammation in Obesity. Cell Metabolism, 2013, 18, 461-462.	7.2	20
83	Dysfunctional HDL Takes Its Toll in Chronic Kidney Disease. Immunity, 2013, 38, 628-630.	6.6	12
84	Activation of caspase-1 by the NLRP3 inflammasome regulates the NADPH oxidase NOX2 to control phagosome function. Nature Immunology, 2013, 14, 543-553.	7.0	177
85	Endothelial Expression of Guidance Cues in Vessel Wall Homeostasis Dysregulation Under Proatherosclerotic Conditions. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 911-919.	1.1	89
86	A big role for small RNAs in HDL homeostasis. Journal of Lipid Research, 2013, 54, 1161-1167.	2.0	18
87	Hypoxia Induces Netrin-1 and Unc5b in Atherosclerotic Plaques. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 1180-1188.	1.1	88
88	Using microRNA as an Alternative Treatment for Hyperlipidemia and Cardiovascular Disease. Journal of Cardiovascular Pharmacology, 2013, 62, 247-254.	0.8	24
89	Neuroimmune Guidance Cue Semaphorin 3E Is Expressed in Atherosclerotic Plaques and Regulates Macrophage Retention. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 886-893.	1.1	114
90	Macrophages, atherosclerosis and the potential of netrin-1 as a novel target for future therapeutic intervention. Future Cardiology, 2012, 8, 349-352.	0.5	6

#	Article	IF	Citations
91	HDL and Cardiovascular Risk. Circulation Research, 2012, 111, 1117-1120.	2.0	54
92	MicroRNAs regulating lipid metabolism in atherogenesis. Thrombosis and Haemostasis, 2012, 107, 642-647.	1.8	81
93	The neuroimmune guidance cue netrin-1 promotes atherosclerosis by inhibiting the emigration of macrophages from plaques. Nature Immunology, 2012, 13, 136-143.	7.0	280
94	The Plaque "Micro―Environment: microRNAs Control the Risk and the Development of Atherosclerosis. Current Atherosclerosis Reports, 2012, 14, 413-421.	2.0	13
95	The doubleâ€edged sword of fibronectin in atherosclerosis. EMBO Molecular Medicine, 2012, 4, 561-563.	3.3	20
96	Inhibition of miR-33a/b in non-human primates raises plasma HDL and lowers VLDL triglycerides. Nature, 2011, 478, 404-407.	13.7	647
97	Macrophages in the Pathogenesis of Atherosclerosis. Cell, 2011, 145, 341-355.	13.5	2,122
98	MicroRNA Modulation of Cholesterol Homeostasis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 2378-2382.	1.1	81
99	Antagonism of miR-33 in mice promotes reverse cholesterol transport and regression of atherosclerosis. Journal of Clinical Investigation, 2011, 121, 2921-2931.	3.9	609
100	The Role of MicroRNAs in Cholesterol Efflux and Hepatic Lipid Metabolism. Annual Review of Nutrition, 2011, 31, 49-63.	4.3	130
101	A High Content Drug Screen Identifies Ursolic Acid as an Inhibitor of Amyloid Î ² Protein Interactions with Its Receptor CD36. Journal of Biological Chemistry, 2011, 286, 34914-34922.	1.6	90
102	Deletion of ABCA1 and ABCG1 Impairs Macrophage Migration Because of Increased Rac1 Signaling. Circulation Research, 2011, 108, 194-200.	2.0	88
103	Role of Toll-Like Receptor 4 in Intimal Foam Cell Accumulation in Apolipoprotein E–Deficient Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 50-57.	1.1	109
104	MyD88 Deficiency Attenuates Angiotensin II-Induced Abdominal Aortic Aneurysm Formation Independent of Signaling Through Toll-Like Receptors 2 and 4. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 2813-2819.	1.1	71
105	HDL promotes rapid atherosclerosis regression in mice and alters inflammatory properties of plaque monocyte-derived cells. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 7166-7171.	3.3	276
106	Scavenger receptor CD36 mediates uptake of high density lipoproteins in mice and by cultured cells. Journal of Lipid Research, 2011, 52, 745-758.	2.0	55
107	miR-33a/b contribute to the regulation of fatty acid metabolism and insulin signaling. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 9232-9237.	3.3	615
108	MicroRNAs in lipid metabolism. Current Opinion in Lipidology, 2011, 22, 86-92.	1.2	262

#	Article	IF	Citations
109	NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature, 2010, 464, 1357-1361.	13.7	3,130
110	CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer. Nature Immunology, 2010, 11, 155-161.	7.0	1,255
111	Phagocytosis and Phagosome Acidification Are Required for Pathogen Processing and MyD88-Dependent Responses to <i>Staphylococcus</i> â€^ <i>aureus</i> . Journal of Immunology, 2010, 184, 7071-7081.	0.4	132
112	Role of Scavenger Receptor A and CD36 in Diet-Induced Nonalcoholic Steatohepatitis in Hyperlipidemic Mice. Gastroenterology, 2010, 138, 2477-2486.e3.	0.6	137
113	MiR-33 Contributes to the Regulation of Cholesterol Homeostasis. Science, 2010, 328, 1570-1573.	6.0	1,095
114	Atherogenic Lipids and Lipoproteins Trigger CD36-TLR2-Dependent Apoptosis in Macrophages Undergoing Endoplasmic Reticulum Stress. Cell Metabolism, 2010, 12, 467-482.	7.2	397
115	microRNAs and cholesterol metabolism. Trends in Endocrinology and Metabolism, 2010, 21, 699-706.	3.1	127
116	Evolutionarily conserved recognition and innate immunity to fungal pathogens by the scavenger receptors SCARF1 and CD36. Journal of Experimental Medicine, 2009, 206, 637-653.	4.2	228
117	Vascular effects of a low-carbohydrate high-protein diet. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 15418-15423.	3.3	150
118	Lack of lymphatic vessel phenotype in LYVEâ€1/CD44 double knockout mice. Journal of Cellular Physiology, 2009, 219, 430-437.	2.0	41
119	Loss of SR-A and CD36 Activity Reduces Atherosclerotic Lesion Complexity Without Abrogating Foam Cell Formation in Hyperlipidemic Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 19-26.	1.1	216
120	The NALP3 inflammasome is involved in the innate immune response to amyloid- \hat{l}^2 . Nature Immunology, 2008, 9, 857-865.	7.0	2,047
121	Targeting innate immunity for CV benefit. Drug Discovery Today: Therapeutic Strategies, 2008, 5, 15-23.	0.5	6
122	Mannose-binding lectin enhances Toll-like receptors 2 and 6 signaling from the phagosome. Journal of Experimental Medicine, 2008, 205, 169-181.	4.2	269
123	Mannose-binding lectin enhances Toll-like receptors 2 and 6 signaling from the phagosome. Journal of Cell Biology, 2008, 180, i2-i2.	2.3	0
124	Pathogenic roles of Tollâ€like receptor 2 and intracellular bacteria in intimal hyperplasia in apolipoprotein Eâ€deficient mice. FASEB Journal, 2008, 22, 174.3.	0.2	0
125	CD36 Signals to the Actin Cytoskeleton and Regulates Microglial Migration via a p130Cas Complex. Journal of Biological Chemistry, 2007, 282, 27392-27401.	1.6	91
126	Serum amyloid P colocalizes with apolipoproteins in human atheroma: functional implications. Journal of Lipid Research, 2007, 48, 2162-2171.	2.0	49

#	Article	IF	Citations
127	Macrophage-Derived Foam Cells in Atherosclerosis: Lessons from Murine Models and Implications for Therapy. Current Drug Targets, 2007, 8, 1249-1263.	1.0	69
128	Designer macrophages: Oxidative metabolism fuels inflammation repair. Cell Metabolism, 2006, 4, 7-8.	7.2	27
129	Untangling the role of amyloid in atherosclerosis. Current Opinion in Lipidology, 2006, 17, 541-547.	1.2	78
130	Combinatorial pattern recognition receptor signaling alters the balance of life and death in macrophages. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 19794-19799.	3.3	162
131	Scavenger Receptors in Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26, 1702-1711.	1.1	461
132	Chemokine CXCL10 Promotes Atherogenesis by Modulating the Local Balance of Effector and Regulatory T Cells. Circulation, 2006, 113, 2301-2312.	1.6	237
133	Selective uptake of HDL cholesteryl esters and cholesterol efflux from mouse peritoneal macrophages independent of SR-BI. Journal of Lipid Research, 2006, 47, 2408-2421.	2.0	42
134	Response to Staphylococcus aureus requires CD36-mediated phagocytosis triggered by the COOH-terminal cytoplasmic domain. Journal of Cell Biology, 2005, 170, 477-485.	2.3	360
135	Netrin-1 inhibits leukocyte migration in vitro and in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 14729-14734.	3.3	254
136	Abca7 Null Mice Retain Normal Macrophage Phosphatidylcholine and Cholesterol Efflux Activity despite Alterations in Adipose Mass and Serum Cholesterol Levels. Journal of Biological Chemistry, 2005, 280, 3989-3995.	1.6	125
137	Inhibition of Atherogenesis in BLT1-Deficient Mice Reveals a Role for LTB4 and BLT1 in Smooth Muscle Cell Recruitment. Circulation, 2005, 112, 578-586.	1.6	130
138	Atherosclerosis and innate immune signaling. Annals of Medicine, 2005, 37, 130-140.	1.5	37
139	Oxidation of Low-Density Lipoproteins Induces Amyloid-like Structures That Are Recognized by Macrophages. Biochemistry, 2005, 44, 9108-9116.	1.2	55
140	Loss of receptor-mediated lipid uptake via scavenger receptor A or CD36 pathways does not ameliorate atherosclerosis in hyperlipidemic mice. Journal of Clinical Investigation, 2005, 115, 2192-2201.	3.9	324
141	Requirement of JNK2 for Scavenger Receptor A-Mediated Foam Cell Formation in Atherogenesis. Science, 2004, 306, 1558-1561.	6.0	259
142	Fibrillar Amyloid Protein Present in Atheroma Activates CD36 Signal Transduction. Journal of Biological Chemistry, 2004, 279, 10643-10648.	1.6	126
143	Reduced atherosclerosis in MyD88-null mice links elevated serum cholesterol levels to activation of innate immunity signaling pathways. Nature Medicine, 2004, 10, 416-421.	15.2	579
144	beta-Amyloid promotes accumulation of lipid peroxides by inhibiting CD36-mediated clearance of oxidized lipoproteins. Journal of Neuroinflammation, 2004, 1, 23.	3.1	34

#	Article	IF	Citations
145	eLiXiRs for restraining inflammation. Nature Medicine, 2003, 9, 168-169.	15.2	13
146	CD36 Mediates the Innate Host Response to \hat{I}^2 -Amyloid. Journal of Experimental Medicine, 2003, 197, 1657-1666.	4.2	422
147	Scavenger Receptors Class A-I/II and CD36 Are the Principal Receptors Responsible for the Uptake of Modified Low Density Lipoprotein Leading to Lipid Loading in Macrophages. Journal of Biological Chemistry, 2002, 277, 49982-49988.	1.6	826
148	A CD36-initiated Signaling Cascade Mediates Inflammatory Effects of \hat{l}^2 -Amyloid. Journal of Biological Chemistry, 2002, 277, 47373-47379.	1.6	302
149	Nuclear hormone receptors and cholesterol trafficking: the orphans find a new home. Journal of Molecular Medicine, 2002, 80, 271-281.	1.7	63
150	Peroxisome proliferator-activated receptors in macrophage biology: friend or foe?. Current Opinion in Lipidology, 2001, 12, 519-527.	1.2	50
151	The role of PPAR-Î ³ in macrophage differentiation and cholesterol uptake. Nature Medicine, 2001, 7, 41-47.	15.2	476
152	ATP-binding Cassette Transporter A1 Contains an NH2-terminal Signal Anchor Sequence That Translocates the Protein's First Hydrophilic Domain to the Exoplasmic Space. Journal of Biological Chemistry, 2001, 276, 15137-15145.	1.6	104
153	Divergent Response to LPS and Bacteria in CD14-Deficient Murine Macrophages. Journal of Immunology, 2000, 165, 4272-4280.	0.4	205
154	Lipopolysaccharide Induces Scavenger Receptor A Expression in Mouse Macrophages: A Divergent Response Relative to Human THP-1 Monocyte/Macrophages. Journal of Immunology, 2000, 164, 2692-2700.	0.4	188
155	Stromelysin-1 (MMP-3) expression driven by a macrophage-specific promoter results in reduced viability in transgenic mice. Atherosclerosis, 2000, 148, 375-386.	0.4	3
156	PPARÎ ³ Is Required for the Differentiation of Adipose Tissue In Vivo and In Vitro. Molecular Cell, 1999, 4, 611-617.	4.5	1,804
157	Gene transfer of RANTES elicits autoimmune renal injury in MRL-Faslpr mice. Kidney International, 1998, 53, 1631-1641.	2.6	78
158	In Vitro–Differentiated Embryonic Stem Cell Macrophages. Arteriosclerosis, Thrombosis, and Vascular Biology, 1998, 18, 1647-1654.	1.1	32
159	Application of a gene transfer strategy to identify molecules that incite autoimmune kidney injury. Experimental Nephrology, 1997, 5, 144-51.	0.4	3
160	Macrophage Growth Factors Introduced into the Kidney Initiate Renal Injury. Molecular Medicine, 1996, 2, 297-312.	1.9	63
161	TNF-alpha enhances colony-stimulating factor-1-induced macrophage accumulation in autoimmune renal disease. Journal of Immunology, 1996, 157, 427-32.	0.4	33
162	Enhanced response of macrophages to CSF-1 in autoimmune mice: a gene transfer strategy. Journal of Immunology, 1996, 157, 433-40.	0.4	25

#	ARTICLE	IF	CITATIONS
163	<i>Leishmania donovani</i> infection enhances macrophage viability in the absence of exogenous growth factor. Journal of Leukocyte Biology, 1994, 55, 91-98.	1.5	24
164	Intracellular infection by Leishmania donovani inhibits macrophage apoptosis. Journal of Immunology, 1994, 152, 2930-7.	0.4	208
165	Alteration of Leishmania donovani infection levels by selective impairment of macrophage signal transduction. Journal of Immunology, 1993, 150, 4457-65.	0.4	50
166	Macrophage Foam Cell Formation: The Pathways to Cholesterol Engorgement. , 0, , 229-254.		1