
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8380552/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature, 2010, 464, 1357-1361.	27.8	3,130
2	Macrophages in the Pathogenesis of Atherosclerosis. Cell, 2011, 145, 341-355.	28.9	2,122
3	The NALP3 inflammasome is involved in the innate immune response to amyloid-β. Nature Immunology, 2008, 9, 857-865.	14.5	2,047
4	Macrophages in atherosclerosis: a dynamic balance. Nature Reviews Immunology, 2013, 13, 709-721.	22.7	1,927
5	PPARÎ ³ Is Required for the Differentiation of Adipose Tissue In Vivo and In Vitro. Molecular Cell, 1999, 4, 611-617.	9.7	1,804
6	CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer. Nature Immunology, 2010, 11, 155-161.	14.5	1,255
7	MiR-33 Contributes to the Regulation of Cholesterol Homeostasis. Science, 2010, 328, 1570-1573.	12.6	1,095
8	Scavenger Receptors Class A-I/II and CD36 Are the Principal Receptors Responsible for the Uptake of Modified Low Density Lipoprotein Leading to Lipid Loading in Macrophages. Journal of Biological Chemistry, 2002, 277, 49982-49988.	3.4	826
9	CD36 coordinates NLRP3 inflammasome activation by facilitating intracellular nucleation of soluble ligands into particulate ligands in sterile inflammation. Nature Immunology, 2013, 14, 812-820.	14.5	746
10	Inhibition of miR-33a/b in non-human primates raises plasma HDL and lowers VLDL triglycerides. Nature, 2011, 478, 404-407.	27.8	647
11	miR-33a/b contribute to the regulation of fatty acid metabolism and insulin signaling. Proceedings of the United States of America, 2011, 108, 9232-9237.	7.1	615
12	Antagonism of miR-33 in mice promotes reverse cholesterol transport and regression of atherosclerosis. Journal of Clinical Investigation, 2011, 121, 2921-2931.	8.2	609
13	Reduced atherosclerosis in MyD88-null mice links elevated serum cholesterol levels to activation of innate immunity signaling pathways. Nature Medicine, 2004, 10, 416-421.	30.7	579
14	MicroRNA Regulation of Atherosclerosis. Circulation Research, 2016, 118, 703-720.	4.5	502
15	The role of PPAR-Î ³ in macrophage differentiation and cholesterol uptake. Nature Medicine, 2001, 7, 41-47.	30.7	476
16	Scavenger Receptors in Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26, 1702-1711.	2.4	461
17	CD36 Mediates the Innate Host Response to β-Amyloid. Journal of Experimental Medicine, 2003, 197, 1657-1666.	8.5	422
18	Atherogenic Lipids and Lipoproteins Trigger CD36-TLR2-Dependent Apoptosis in Macrophages Undergoing Endoplasmic Reticulum Stress. Cell Metabolism, 2010, 12, 467-482.	16.2	397

#	Article	IF	CITATIONS
19	Response to Staphylococcus aureus requires CD36-mediated phagocytosis triggered by the COOH-terminal cytoplasmic domain. Journal of Cell Biology, 2005, 170, 477-485.	5.2	360
20	Regulation of macrophage immunometabolism in atherosclerosis. Nature Immunology, 2018, 19, 526-537.	14.5	336
21	Loss of receptor-mediated lipid uptake via scavenger receptor A or CD36 pathways does not ameliorate atherosclerosis in hyperlipidemic mice. Journal of Clinical Investigation, 2005, 115, 2192-2201.	8.2	324
22	MicroRNA-33–dependent regulation of macrophage metabolism directs immune cell polarization in atherosclerosis. Journal of Clinical Investigation, 2015, 125, 4334-4348.	8.2	304
23	A CD36-initiated Signaling Cascade Mediates Inflammatory Effects of β-Amyloid. Journal of Biological Chemistry, 2002, 277, 47373-47379.	3.4	302
24	Mycobacterium tuberculosis induces the miR-33 locus to reprogram autophagy and host lipid metabolism. Nature Immunology, 2016, 17, 677-686.	14.5	295
25	The neuroimmune guidance cue netrin-1 promotes atherosclerosis by inhibiting the emigration of macrophages from plaques. Nature Immunology, 2012, 13, 136-143.	14.5	280
26	HDL promotes rapid atherosclerosis regression in mice and alters inflammatory properties of plaque monocyte-derived cells. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 7166-7171.	7.1	276
27	Mannose-binding lectin enhances Toll-like receptors 2 and 6 signaling from the phagosome. Journal of Experimental Medicine, 2008, 205, 169-181.	8.5	269
28	Inflammatory Ly6Chi monocytes and their conversion to M2 macrophages drive atherosclerosis regression. Journal of Clinical Investigation, 2017, 127, 2904-2915.	8.2	266
29	MicroRNAs in lipid metabolism. Current Opinion in Lipidology, 2011, 22, 86-92.	2.7	262
30	Cholesterol Loading Reprograms the MicroRNA-143/145–Myocardin Axis to Convert Aortic Smooth Muscle Cells to a Dysfunctional Macrophage-Like Phenotype. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 535-546.	2.4	261
31	Requirement of JNK2 for Scavenger Receptor A-Mediated Foam Cell Formation in Atherogenesis. Science, 2004, 306, 1558-1561.	12.6	259
32	Netrin-1 inhibits leukocyte migration <i>in vitro</i> and <i>in vivo</i> . Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 14729-14734.	7.1	254
33	Chemokine CXCL10 Promotes Atherogenesis by Modulating the Local Balance of Effector and Regulatory T Cells. Circulation, 2006, 113, 2301-2312.	1.6	237
34	Evolutionarily conserved recognition and innate immunity to fungal pathogens by the scavenger receptors SCARF1 and CD36. Journal of Experimental Medicine, 2009, 206, 637-653.	8.5	228
35	Loss of SR-A and CD36 Activity Reduces Atherosclerotic Lesion Complexity Without Abrogating Foam Cell Formation in Hyperlipidemic Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 19-26.	2.4	216
36	Netrin-1 promotes adipose tissue macrophage retention and insulin resistance in obesity. Nature Medicine, 2014, 20, 377-384.	30.7	213

#	Article	IF	CITATIONS
37	Cholesterol Efflux Pathways Suppress Inflammasome Activation, NETosis, and Atherogenesis. Circulation, 2018, 138, 898-912.	1.6	208
38	Intracellular infection by Leishmania donovani inhibits macrophage apoptosis. Journal of Immunology, 1994, 152, 2930-7.	0.8	208
39	Divergent Response to LPS and Bacteria in CD14-Deficient Murine Macrophages. Journal of Immunology, 2000, 165, 4272-4280.	0.8	205
40	Lipopolysaccharide Induces Scavenger Receptor A Expression in Mouse Macrophages: A Divergent Response Relative to Human THP-1 Monocyte/Macrophages. Journal of Immunology, 2000, 164, 2692-2700.	0.8	188
41	Activation of caspase-1 by the NLRP3 inflammasome regulates the NADPH oxidase NOX2 to control phagosome function. Nature Immunology, 2013, 14, 543-553.	14.5	177
42	Combinatorial pattern recognition receptor signaling alters the balance of life and death in macrophages. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 19794-19799.	7.1	162
43	Macrophage Mitochondrial Energy Status Regulates Cholesterol Efflux and Is Enhanced by Anti-miR33 in Atherosclerosis. Circulation Research, 2015, 117, 266-278.	4.5	158
44	microRNA-33 Regulates Macrophage Autophagy in Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 1058-1067.	2.4	158
45	Vascular effects of a low-carbohydrate high-protein diet. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 15418-15423.	7.1	150
46	Macrophage Trafficking, Inflammatory Resolution, and Genomics in Atherosclerosis. Journal of the American College of Cardiology, 2018, 72, 2181-2197.	2.8	139
47	Myocardial infarction accelerates breast cancer via innate immune reprogramming. Nature Medicine, 2020, 26, 1452-1458.	30.7	138
48	Role of Scavenger Receptor A and CD36 in Diet-Induced Nonalcoholic Steatohepatitis in Hyperlipidemic Mice. Gastroenterology, 2010, 138, 2477-2486.e3.	1.3	137
49	Phagocytosis and Phagosome Acidification Are Required for Pathogen Processing and MyD88-Dependent Responses to <i>Staphylococcus</i> â€^ <i>aureus</i> . Journal of Immunology, 2010, 184, 7071-7081.	0.8	132
50	Store-Operated Ca 2+ Entry Controls Induction of Lipolysis and the Transcriptional Reprogramming to Lipid Metabolism. Cell Metabolism, 2017, 25, 698-712.	16.2	131
51	Vitamin A mediates conversion of monocyte-derived macrophages into tissue-resident macrophages during alternative activation. Nature Immunology, 2017, 18, 642-653.	14.5	131
52	Inhibition of Atherogenesis in BLT1-Deficient Mice Reveals a Role for LTB4 and BLT1 in Smooth Muscle Cell Recruitment. Circulation, 2005, 112, 578-586.	1.6	130
53	The Role of MicroRNAs in Cholesterol Efflux and Hepatic Lipid Metabolism. Annual Review of Nutrition, 2011, 31, 49-63.	10.1	130
54	Regulatory T Cells License Macrophage Pro-Resolving Functions During Atherosclerosis Regression. Circulation Research, 2020, 127, 335-353.	4.5	130

#	Article	IF	CITATIONS
55	microRNAs and cholesterol metabolism. Trends in Endocrinology and Metabolism, 2010, 21, 699-706.	7.1	127
56	HDL-Mimetic PLGA Nanoparticle To Target Atherosclerosis Plaque Macrophages. Bioconjugate Chemistry, 2015, 26, 443-451.	3.6	127
57	Fibrillar Amyloid Protein Present in Atheroma Activates CD36 Signal Transduction. Journal of Biological Chemistry, 2004, 279, 10643-10648.	3.4	126
58	Abca7 Null Mice Retain Normal Macrophage Phosphatidylcholine and Cholesterol Efflux Activity despite Alterations in Adipose Mass and Serum Cholesterol Levels. Journal of Biological Chemistry, 2005, 280, 3989-3995.	3.4	125
59	Neuroimmune Guidance Cue Semaphorin 3E Is Expressed in Atherosclerotic Plaques and Regulates Macrophage Retention. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 886-893.	2.4	114
60	Role of Toll-Like Receptor 4 in Intimal Foam Cell Accumulation in Apolipoprotein E–Deficient Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 50-57.	2.4	109
61	Macrophage-derived netrin-1 promotes abdominal aortic aneurysm formation by activating MMP3 in vascular smooth muscle cells. Nature Communications, 2018, 9, 5022.	12.8	109
62	ATP-binding Cassette Transporter A1 Contains an NH2-terminal Signal Anchor Sequence That Translocates the Protein's First Hydrophilic Domain to the Exoplasmic Space. Journal of Biological Chemistry, 2001, 276, 15137-15145.	3.4	104
63	Single Step Reconstitution of Multifunctional High-Density Lipoprotein-Derived Nanomaterials Using Microfluidics. ACS Nano, 2013, 7, 9975-9983.	14.6	104
64	The long noncoding RNA CHROME regulates cholesterol homeostasis in primates. Nature Metabolism, 2019, 1, 98-110.	11.9	104
65	Molecular Pathways Underlying Cholesterol Homeostasis. Nutrients, 2018, 10, 760.	4.1	97
66	Mycobacterium tuberculosis Limits Host Glycolysis and IL- 1^2 by Restriction of PFK-M via MicroRNA-21. Cell Reports, 2020, 30, 124-136.e4.	6.4	97
67	miR33 Inhibition Overcomes Deleterious Effects of Diabetes Mellitus on Atherosclerosis Plaque Regression in Mice. Circulation Research, 2014, 115, 759-769.	4.5	96
68	Immune cell screening of a nanoparticle library improves atherosclerosis therapy. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E6731-E6740.	7.1	95
69	CD36 Signals to the Actin Cytoskeleton and Regulates Microglial Migration via a p130Cas Complex. Journal of Biological Chemistry, 2007, 282, 27392-27401.	3.4	91
70	A High Content Drug Screen Identifies Ursolic Acid as an Inhibitor of Amyloid \hat{I}^2 Protein Interactions with Its Receptor CD36. Journal of Biological Chemistry, 2011, 286, 34914-34922.	3.4	90
71	Endothelial Expression of Guidance Cues in Vessel Wall Homeostasis Dysregulation Under Proatherosclerotic Conditions. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 911-919.	2.4	89
72	Deletion of ABCA1 and ABCG1 Impairs Macrophage Migration Because of Increased Rac1 Signaling. Circulation Research, 2011, 108, 194-200.	4.5	88

#	Article	IF	CITATIONS
73	Hypoxia Induces Netrin-1 and Unc5b in Atherosclerotic Plaques. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 1180-1188.	2.4	88
74	Platelet regulation of myeloid suppressor of cytokine signaling 3 accelerates atherosclerosis. Science Translational Medicine, 2019, 11, .	12.4	85
75	MicroRNA Modulation of Cholesterol Homeostasis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 2378-2382.	2.4	81
76	MicroRNAs regulating lipid metabolism in atherogenesis. Thrombosis and Haemostasis, 2012, 107, 642-647.	3.4	81
77	Gene transfer of RANTES elicits autoimmune renal injury in MRL-Faslpr mice. Kidney International, 1998, 53, 1631-1641.	5.2	78
78	Untangling the role of amyloid in atherosclerosis. Current Opinion in Lipidology, 2006, 17, 541-547.	2.7	78
79	MicroRNA Control of High-Density Lipoprotein Metabolism and Function. Circulation Research, 2014, 114, 183-192.	4.5	73
80	MyD88 Deficiency Attenuates Angiotensin II-Induced Abdominal Aortic Aneurysm Formation Independent of Signaling Through Toll-Like Receptors 2 and 4. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 2813-2819.	2.4	71
81	Macrophage-Derived Foam Cells in Atherosclerosis: Lessons from Murine Models and Implications for Therapy. Current Drug Targets, 2007, 8, 1249-1263.	2.1	69
82	Macrophage Growth Factors Introduced into the Kidney Initiate Renal Injury. Molecular Medicine, 1996, 2, 297-312.	4.4	63
83	Nuclear hormone receptors and cholesterol trafficking: the orphans find a new home. Journal of Molecular Medicine, 2002, 80, 271-281.	3.9	63
84	Modulation of ambient temperature promotes inflammation and initiates atherosclerosis in wild type C57BL/6 mice. Molecular Metabolism, 2016, 5, 1121-1130.	6.5	63
85	Single-Cell RNA Sequencing of Visceral Adipose Tissue Leukocytes Reveals that Caloric Restriction Following Obesity Promotes the Accumulation of a Distinct Macrophage Population with Features of Phagocytic Cells. Immunometabolism, 2019, 1, .	1.6	63
86	miRNA Targeting of Oxysterol-Binding Protein-Like 6 Regulates Cholesterol Trafficking and Efflux. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 942-951.	2.4	62
87	Noncoding RNAs in Cardiovascular Disease: Current Knowledge, Tools and Technologies for Investigation, and Future Directions: A Scientific Statement From the American Heart Association. Circulation Genomic and Precision Medicine, 2020, 13, e000062.	3.6	61
88	Oxidation of Low-Density Lipoproteins Induces Amyloid-like Structures That Are Recognized by Macrophages. Biochemistry, 2005, 44, 9108-9116.	2.5	55
89	Scavenger receptor CD36 mediates uptake of high density lipoproteins in mice and by cultured cells. Journal of Lipid Research, 2011, 52, 745-758.	4.2	55
90	HDL and Cardiovascular Risk. Circulation Research, 2012, 111, 1117-1120.	4.5	54

#	Article	IF	CITATIONS
91	Enhanced glycolysis and HIF-1α activation in adipose tissue macrophages sustains local and systemic interleukin-1l² production in obesity. Scientific Reports, 2020, 10, 5555.	3.3	53
92	Chronic stress primes innate immune responses in mice and humans. Cell Reports, 2021, 36, 109595.	6.4	53
93	Peroxisome proliferator-activated receptors in macrophage biology: friend or foe?. Current Opinion in Lipidology, 2001, 12, 519-527.	2.7	50
94	Alteration of Leishmania donovani infection levels by selective impairment of macrophage signal transduction. Journal of Immunology, 1993, 150, 4457-65.	0.8	50
95	Serum amyloid P colocalizes with apolipoproteins in human atheroma: functional implications. Journal of Lipid Research, 2007, 48, 2162-2171.	4.2	49
96	IL-1 signaling in atherosclerosis: sibling rivalry. Nature Immunology, 2013, 14, 1030-1032.	14.5	49
97	Netrin-1 Is a Critical Autocrine/Paracrine Factor for Osteoclast Differentiation. Journal of Bone and Mineral Research, 2015, 30, 837-854.	2.8	48
98	Long noncoding RNAs in lipid metabolism. Current Opinion in Lipidology, 2018, 29, 224-232.	2.7	46
99	Leishmania amazonensis Engages CD36 to Drive Parasitophorous Vacuole Maturation. PLoS Pathogens, 2016, 12, e1005669.	4.7	45
100	Leukocyte Heterogeneity in Adipose Tissue, Including in Obesity. Circulation Research, 2020, 126, 1590-1612.	4.5	44
101	Selective uptake of HDL cholesteryl esters and cholesterol efflux from mouse peritoneal macrophages independent of SR-BI. Journal of Lipid Research, 2006, 47, 2408-2421.	4.2	42
102	Lack of lymphatic vessel phenotype in LYVEâ€1/CD44 double knockout mice. Journal of Cellular Physiology, 2009, 219, 430-437.	4.1	41
103	Netrin-1 Alters Adipose Tissue Macrophage Fate and Function in Obesity. Immunometabolism, 2019, 1, .	1.6	41
104	IL-19 Halts Progression of Atherosclerotic Plaque, Polarizes, and Increases Cholesterol Uptake and Efflux in Macrophages. American Journal of Pathology, 2016, 186, 1361-1374.	3.8	39
105	Atherosclerosis and innate immune signaling. Annals of Medicine, 2005, 37, 130-140.	3.8	37
106	Poly(ADP-ribose) Polymerase 1 Represses Liver X Receptor-mediated ABCA1 Expression and Cholesterol Efflux in Macrophages. Journal of Biological Chemistry, 2016, 291, 11172-11184.	3.4	37
107	Regulation of Stress Granule Formation by Inflammation, Vascular Injury, and Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 2014-2027.	2.4	36
108	beta-Amyloid promotes accumulation of lipid peroxides by inhibiting CD36-mediated clearance of oxidized lipoproteins. Journal of Neuroinflammation, 2004, 1, 23.	7.2	34

#	Article	IF	CITATIONS
109	TNF-alpha enhances colony-stimulating factor-1-induced macrophage accumulation in autoimmune renal disease. Journal of Immunology, 1996, 157, 427-32.	0.8	33
110	In Vitro–Differentiated Embryonic Stem Cell Macrophages. Arteriosclerosis, Thrombosis, and Vascular Biology, 1998, 18, 1647-1654.	2.4	32
111	Reverse cardio-oncology: Exploring the effects of cardiovascular disease on cancer pathogenesis. Journal of Molecular and Cellular Cardiology, 2022, 163, 1-8.	1.9	32
112	LXR-Mediated ABCA1 Expression and Function Are Modulated by High Glucose and PRMT2. PLoS ONE, 2015, 10, e0135218.	2.5	30
113	Targeting inflammation in CVD: advances and challenges. Nature Reviews Cardiology, 2019, 16, 74-75.	13.7	29
114	Crosstalk Between the Heart and Cancer. Circulation, 2020, 142, 684-687.	1.6	28
115	Designer macrophages: Oxidative metabolism fuels inflammation repair. Cell Metabolism, 2006, 4, 7-8.	16.2	27
116	miR-33 Silencing Reprograms the Immune Cell Landscape in Atherosclerotic Plaques. Circulation Research, 2021, 128, 1122-1138.	4.5	27
117	Heat shock protein-27 attenuates foam cell formation and atherogenesis by down-regulating scavenger receptor-A expression via NF-κB signaling. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2013, 1831, 1721-1728.	2.4	26
118	Netrin-1 is highly expressed and required in inflammatory infiltrates in wear particle-induced osteolysis. Annals of the Rheumatic Diseases, 2016, 75, 1706-1713.	0.9	26
119	Introduction to the Obesity, Metabolic Syndrome, and CVD Compendium. Circulation Research, 2020, 126, 1475-1476.	4.5	26
120	Netrinâ€1 and its receptor Unc5b are novel targets for the treatment of inflammatory arthritis. FASEB Journal, 2016, 30, 3835-3844.	0.5	25
121	COVID-19 and the Heart and Vasculature. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, 2045-2053.	2.4	25
122	Silencing Myeloid Netrin-1 Induces Inflammation Resolution and Plaque Regression. Circulation Research, 2021, 129, 530-546.	4.5	25
123	Enhanced response of macrophages to CSF-1 in autoimmune mice: a gene transfer strategy. Journal of Immunology, 1996, 157, 433-40.	0.8	25
124	<i>Leishmania donovani</i> infection enhances macrophage viability in the absence of exogenous growth factor. Journal of Leukocyte Biology, 1994, 55, 91-98.	3.3	24
125	Using microRNA as an Alternative Treatment for Hyperlipidemia and Cardiovascular Disease. Journal of Cardiovascular Pharmacology, 2013, 62, 247-254.	1.9	24
126	Monocyte Adhesion and Plaque Recruitment During Atherosclerosis Development Is Regulated by the Adapter Protein Chat-H/SHEP1. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 1791-1801.	2.4	24

#	Article	IF	CITATIONS
127	Rapid neutrophil mobilization by VCAM-1+ endothelial cell-derived extracellular vesicles. Cardiovascular Research, 2023, 119, 236-251.	3.8	22
128	Long non-coding RNAs regulating macrophage functions in homeostasis and disease. Vascular Pharmacology, 2019, 114, 122-130.	2.1	21
129	The doubleâ€edged sword of fibronectin in atherosclerosis. EMBO Molecular Medicine, 2012, 4, 561-563.	6.9	20
130	The Semaphorin 3E/PlexinD1 Axis Regulates Macrophage Inflammation in Obesity. Cell Metabolism, 2013, 18, 461-462.	16.2	20
131	A Regulator of Secretory Vesicle Size, Kelch-Like Protein 12, Facilitates the Secretion of Apolipoprotein B100 and Very-Low-Density Lipoproteins—Brief Report. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 251-254.	2.4	19
132	microRNAs: small regulators with a big impact on lipid metabolism. Journal of Lipid Research, 2013, 54, 1159-1160.	4.2	18
133	A big role for small RNAs in HDL homeostasis. Journal of Lipid Research, 2013, 54, 1161-1167.	4.2	18
134	Commentary on Fatty Acid Wars. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, e8-9.	2.4	18
135	Small RNA Overcomes the Challenges of Therapeutic Targeting of Microsomal Triglyceride Transfer Protein. Circulation Research, 2013, 113, 1189-1191.	4.5	17
136	eLiXiRs for restraining inflammation. Nature Medicine, 2003, 9, 168-169.	30.7	13
137	The Plaque "Micro―Environment: microRNAs Control the Risk and the Development of Atherosclerosis. Current Atherosclerosis Reports, 2012, 14, 413-421.	4.8	13
138	An Eclectic Cast of Cellular Actors Orchestrates Innate Immune Responses in the Mechanisms Driving Obesity and Metabolic Perturbation. Circulation Research, 2020, 126, 1565-1589.	4.5	13
139	LDL Receptor Pathway Regulation by miR-224 and miR-520d. Frontiers in Cardiovascular Medicine, 2020, 7, 81.	2.4	13
140	Dysfunctional HDL Takes Its Toll in Chronic Kidney Disease. Immunity, 2013, 38, 628-630.	14.3	12
141	Emerging Roles of PCSK9. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 211-212.	2.4	12
142	MicroRNA-33 Inhibits Adaptive Thermogenesis and Adipose Tissue Beiging. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 1360-1373.	2.4	11
143	High-Density Lipoproteins Put Out the Fire. Cell Metabolism, 2014, 19, 175-176.	16.2	10
144	A Qualitative Study Focused on Maternity Care Professionals' Perspectives on the Challenges of Providing Care During the COVID-19 Pandemic. Journal of Perinatal and Neonatal Nursing, 2022, 36, 46-54.	0.7	7

#	Article	IF	CITATIONS
145	Targeting innate immunity for CV benefit. Drug Discovery Today: Therapeutic Strategies, 2008, 5, 15-23.	0.5	6
146	Macrophages, atherosclerosis and the potential of netrin-1 as a novel target for future therapeutic intervention. Future Cardiology, 2012, 8, 349-352.	1.2	6
147	Local Anti-miR Delivery. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 1905-1906.	2.4	6
148	The Liver X Receptor Is Selectively Modulated to Differentially Alter Female Mammary Metastasis-associated Myeloid Cells. Endocrinology, 2022, 163, .	2.8	5
149	Defining Macrophages in the Heart One Cell at a Time. Trends in Immunology, 2019, 40, 179-181.	6.8	4
150	High-Throughput Screening Identifies MicroRNAs Regulating Human PCSK9 and Hepatic Low-Density Lipoprotein Receptor Expression. Frontiers in Cardiovascular Medicine, 2021, 8, 667298.	2.4	4
151	Stromelysin-1 (MMP-3) expression driven by a macrophage-specific promoter results in reduced viability in transgenic mice. Atherosclerosis, 2000, 148, 375-386.	0.8	3
152	Abstract 027: A Micropeptide Concealed in a Putative Long Non-coding RNA Directs Inflammation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, .	2.4	3
153	Application of a gene transfer strategy to identify molecules that incite autoimmune kidney injury. Experimental Nephrology, 1997, 5, 144-51.	0.4	3
154	Connecting Transcriptional and Functional Macrophage Heterogeneity in Atherosclerosis. Circulation Research, 2019, 125, 1052-1054.	4.5	2
155	Two birds, one stone: NFATc3 controls dual actions of miR-204 in foam cell formation. European Heart Journal, 2021, , .	2.2	2
156	The Long Non-Coding Rna Chromr Regulates Cholesterol Homeostasis In Primates. Atherosclerosis, 2019, 287, e287.	0.8	1
157	A heritable netrin-1 mutation increases atherogenic immune responses. Atherosclerosis, 2020, 301, 82-83.	0.8	1
158	Macrophage Foam Cell Formation: The Pathways to Cholesterol Engorgement. , 0, , 229-254.		1
159	Abstract 456: LncRNA CHROME is Increased in Cardiovascular Disease and Regulates Inflammatory Gene Expression. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, .	2.4	1
160	OUP accepted manuscript. European Heart Journal, 2022, , .	2.2	1
161	Women in Metabolism: Part I. Cell Metabolism, 2015, 21, 654-657.	16.2	Ο
162	Mannose-binding lectin enhances Toll-like receptors 2 and 6 signaling from the phagosome. Journal of Cell Biology, 2008, 180, i2-i2.	5.2	0

#	Article	IF	CITATIONS
163	Pathogenic roles of Tollâ€like receptor 2 and intracellular bacteria in intimal hyperplasia in apolipoprotein Eâ€deficient mice. FASEB Journal, 2008, 22, 174.3.	0.5	0
164	Abstract 583: Targeting of Macrophage Netrin-1 Expression Promotes Plaque Regression and Resolution of Chronic Inflammation in Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, .	2.4	0
165	Abstract 190: Mir-33 Inhibition Alters Monocyte/macrophage Kinetic Processes to Promote Atherosclerotic Plaque Regression. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, .	2.4	0
166	Shobha Ghosh (1958–2021). Arteriosclerosis, Thrombosis, and Vascular Biology, 2022, 42, 239-240.	2.4	0
167	Abstract 624: MiR-33 Antagonism Prevents the Progression of Atherosclerosis by Promoting an M2 Macrophage Phenotype. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, .	2.4	0