Brian J Werth

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/838036/publications.pdf

Version: 2024-02-01

40 papers 1,215 citations

20 h-index 395702 33 g-index

42 all docs 42 docs citations

42 times ranked

1254 citing authors

#	Article	lF	CITATIONS
1	Ceftaroline Increases Membrane Binding and Enhances the Activity of Daptomycin against Daptomycin-Nonsusceptible Vancomycin-Intermediate Staphylococcus aureus in a Pharmacokinetic/Pharmacodynamic Model. Antimicrobial Agents and Chemotherapy, 2013, 57, 66-73.	3.2	118
2	Characterization of the Mechanisms of Daptomycin Resistance among Gram-Positive Bacterial Pathogens by Multidimensional Lipidomics. MSphere, 2017, 2, .	2.9	87
3	Novel Combinations of Vancomycin plus Ceftaroline or Oxacillin against Methicillin-Resistant Vancomycin-Intermediate Staphylococcus aureus (VISA) and Heterogeneous VISA. Antimicrobial Agents and Chemotherapy, 2013, 57, 2376-2379.	3.2	62
4	Rapid Detection of Vancomycin-Intermediate Staphylococcus aureus by Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry. Journal of Clinical Microbiology, 2016, 54, 883-890.	3.9	62
5	Reduced glycopeptide and lipopeptide susceptibility in Staphylococcus aureus and the "seesaw effectâ€∙ Taking advantage of the back door left open?. Drug Resistance Updates, 2013, 16, 73-79.	14.4	55
6	Evaluation of Ceftaroline Activity against Heteroresistant Vancomycin-Intermediate Staphylococcus aureus and Vancomycin-Intermediate Methicillin-Resistant S. aureus Strains in an ⟨i⟩In Vitro⟨ i⟩ Pharmacokinetic/Pharmacodynamic Model: Exploring the "Seesaw Effect― Antimicrobial Agents and Chemotherapy, 2013, 57, 2664-2668.	3.2	54
7	Evaluation of the novel combination of daptomycin plus ceftriaxone against vancomycin-resistant enterococci in an in vitro pharmacokinetic/pharmacodynamic simulated endocardial vegetation model. Journal of Antimicrobial Chemotherapy, 2014, 69, 2148-2154.	3.0	53
8	Defining Daptomycin Resistance Prevention Exposures in Vancomycin-Resistant Enterococcus faecium and E. faecalis. Antimicrobial Agents and Chemotherapy, 2014, 58, 5253-5261.	3.2	53
9	Multidrug-Resistant <i>Corynebacterium striatum</i> Associated with Increased Use of Parenteral Antimicrobial Drugs. Emerging Infectious Diseases, 2016, 22, .	4.3	51
10	Potent synergy of ceftobiprole plus daptomycin against multiple strains of Staphylococcus aureus with various resistance phenotypes. Journal of Antimicrobial Chemotherapy, 2014, 69, 3006-3010.	3.0	50
11	Evaluation of Ceftaroline, Vancomycin, Daptomycin, or Ceftaroline plus Daptomycin against Daptomycin-Nonsusceptible Methicillin-Resistant Staphylococcus aureus in an <i>ln Vitro</i> Pharmacokinetic/Pharmacodynamic Model of Simulated Endocardial Vegetations. Antimicrobial Agents and Chemotherapy, 2014, 58, 3177-3181.	3.2	44
12	Antimicrobial use across six referral hospitals in Tanzania: a point prevalence survey. BMJ Open, 2020, 10, e042819.	1.9	41
13	Fosfomycin Enhances the Activity of Daptomycin against Vancomycin-Resistant Enterococci in an <i>In Vitro<$i>$ Pharmacokinetic-Pharmacodynamic Model. Antimicrobial Agents and Chemotherapy, 2016, 60, 5716-5723.</i>	3.2	37
14	Emergence of High-Level Daptomycin Resistance in <i>Corynebacterium striatum</i> in Two Patients with Left Ventricular Assist Device Infections. Microbial Drug Resistance, 2016, 22, 233-237.	2.0	37
15	A Novel Approach Utilizing Biofilm Time-Kill Curves To Assess the Bactericidal Activity of Ceftaroline Combinations against Biofilm-Producing Methicillin-Resistant Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 2014, 58, 2989-2992.	3 . 2	36
16	The combination of ceftaroline plus daptomycin allows for therapeutic de-escalation and daptomycin sparing against MRSA. Journal of Antimicrobial Chemotherapy, 2015, 70, 505-509.	3.0	36
17	Ceftobiprole and ampicillin increase daptomycin susceptibility of daptomycin-susceptible and resistant VRE. Journal of Antimicrobial Chemotherapy, 2015, 70, 489-493.	3.0	35
18	Evaluation of the Novel Combination of High-Dose Daptomycin plus Trimethoprim-Sulfamethoxazole against Daptomycin-Nonsusceptible Methicillin-Resistant Staphylococcus aureus Using an <i>In Vitro</i> Pharmacokinetic/Pharmacodynamic Model of Simulated Endocardial Vegetations. Antimicrobial Agents and Chemotherapy, 2012, 56, 5709-5714.	3.2	33

#	Article	IF	CITATIONS
19	Ceftaroline plus Avibactam Demonstrates Bactericidal Activity against Pathogenic Anaerobic Bacteria in a One-Compartment <i>In Vitro</i> Pharmacokinetic/Pharmacodynamic Model. Antimicrobial Agents and Chemotherapy, 2014, 58, 559-562.	3.2	29
20	Occurrence of cross-resistance and \hat{l}^2 -lactam seesaw effect in glycopeptide-, lipopeptide- and lipoglycopeptide-resistant MRSA correlates with membrane phosphatidylglycerol levels. Journal of Antimicrobial Chemotherapy, 2020, 75, 1182-1186.	3.0	29
21	"Sex in the Time of COVID― Clinical Guidelines for Sexually Transmitted Disease Management in an Era of Social Distancing. Sexually Transmitted Diseases, 2020, 47, 427-430.	1.7	26
22	National Consumption of Antimicrobials in Tanzania: 2017–2019. Frontiers in Pharmacology, 2020, 11, 585553.	3.5	21
23	Dalbavancin exposure inÂvitro selects for dalbavancin-non-susceptible and vancomycin-intermediate strains of methicillin-resistant Staphylococcus aureus. Clinical Microbiology and Infection, 2021, 27, 910.e1-910.e8.	6.0	20
24	New Perspectives on Antimicrobial Agents: Long-Acting Lipoglycopeptides. Antimicrobial Agents and Chemotherapy, 2022, 66, e0261420.	3.2	19
25	Pharmacokinetic/pharmacodynamic considerations for new and current therapeutic drugs for uncomplicated gonorrhoea—challenges and opportunities. Clinical Microbiology and Infection, 2020, 26, 1630-1635.	6.0	16
26	Shifting trends in the incidence of Pseudomonas aeruginosa septicemia in hospitalized adults in the United States from 1996-2010. American Journal of Infection Control, 2015, 43, 465-468.	2.3	14
27	Exploring the pharmacodynamic interactions between tedizolid and other orally bioavailable antimicrobials against Staphylococcus aureus and Staphylococcus epidermidis. Journal of Antimicrobial Chemotherapy, 2017, 72, 1410-1414.	3.0	14
28	Gentamicin Alone Is Inadequate to Eradicate <i>Neisseria Gonorrhoeae</i> From the Pharynx. Clinical Infectious Diseases, 2020, 71, 1877-1882.	5.8	14
29	The combination of ampicillin plus ceftaroline is synergistic against <i>Enterococcus faecalis</i> Journal of Antimicrobial Chemotherapy, 2015, 70, 2414-2417.	3.0	12
30	Emergence of Dalbavancin, Vancomycin, and Daptomycin Nonsusceptible <i>Staphylococcus aureus</i> in a Patient Treated With Dalbavancin: Case Report and Isolate Characterization. Clinical Infectious Diseases, 2022, 75, 1641-1644.	5.8	12
31	Pharmacodynamics of Ceftaroline plus Ampicillin against Enterococcus faecalis in an In Vitro Pharmacokinetic/Pharmacodynamic Model of Simulated Endocardial Vegetations. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	11
32	Identification of a novel tedizolid resistance mutation in <i>rpoB</i> of MRSA after <i>in vitro</i> serial passage. Journal of Antimicrobial Chemotherapy, 2021, 76, 292-296.	3.0	8
33	Evolution of cefiderocol resistance in <i>Stenotrophomonas maltophilia</i> using <i>in vitro</i> serial passage techniques. JAC-Antimicrobial Resistance, 2022, 4, dlac011.	2.1	8
34	Synergy Between Beta-Lactams and Lipo-, Glyco-, and Lipoglycopeptides, Is Independent of the Seesaw Effect in Methicillin-Resistant Staphylococcus aureus. Frontiers in Molecular Biosciences, 2021, 8, 688357.	3.5	7
35	Differential Effects of Penicillin Binding Protein Deletion on the Susceptibility of Enterococcus faecium to Cationic Peptide Antibiotics. Antimicrobial Agents and Chemotherapy, 2015, 59, 6132-6139.	3.2	3
36	Varied Contribution of Phospholipid Shedding From Membrane to Daptomycin Tolerance in Staphylococcus aureus. Frontiers in Molecular Biosciences, 2021, 8, 679949.	3.5	3

#	Article	IF	CITATIONS
37	Ceftaroline Increases Membrane Binding and Enhances the Activity of Daptomycin against Daptomycin-Nonsusceptible Vancomycin-Intermediate Staphylococcus aureus in a Pharmacokinetic/Pharmacodynamic Model. Antimicrobial Agents and Chemotherapy, 2013, 57, 1565-1565.	3.2	2
38	Comment on: Failure of combination therapy with daptomycin and synergistic ceftriaxone for enterococcal endocarditis. Journal of Antimicrobial Chemotherapy, 2015, 70, 1272-1273.	3.0	1
39	Reporting behaviors and perceptions toward the National Healthcare Safety Network antimicrobial use (AU) and antimicrobial resistance (AR) modules. Infection Control and Hospital Epidemiology, 0, , 1-7.	1.8	1
40	New Guidelines Endorse Old Recommendations for Invasive Enterococcal Infections. Clinical Infectious Diseases, 2016, 63, 281-282.	5.8	O