Anders M Fjell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8379388/publications.pdf

Version: 2024-02-01

		26630	22832
152	14,527	56	112
papers	citations	h-index	g-index
175	175	175	16022
175	175	175	16022
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Education and Income Show Heterogeneous Relationships to Lifespan Brain and Cognitive Differences Across European and US Cohorts. Cerebral Cortex, 2022, 32, 839-854.	2.9	25
2	Associations of circulating C-reactive proteins, APOE ε4, and brain markers for Alzheimer's disease in healthy samples across the lifespan. Brain, Behavior, and Immunity, 2022, 100, 243-253.	4.1	12
3	Whole-brain connectivity during encoding: age-related differences and associations with cognitive and brain structural decline. Cerebral Cortex, 2022, 33, 68-82.	2.9	7
4	Public perceptions of brain health: an international, online cross-sectional survey. BMJ Open, 2022, 12, e057999.	1.9	6
5	Relationship between cerebrospinal fluid neurodegeneration biomarkers and temporal brain atrophy in cognitively healthy older adults. Neurobiology of Aging, 2022, 116, 80-91.	3.1	5
6	Cognitive and hippocampal changes weeks and years after memory training. Scientific Reports, 2022, 12, 7877.	3.3	7
7	Risk- and protective factors for memory plasticity in aging. Aging, Neuropsychology, and Cognition, 2021, 28, 201-217.	1.3	5
8	Comparative morphology of the corpus callosum across the adult lifespan in chimpanzees (<scp><i>Pan troglodytes</i></scp>) and humans. Journal of Comparative Neurology, 2021, 529, 1584-1596.	1.6	3
9	A recipe for accurate estimation of lifespan brain trajectories, distinguishing longitudinal and cohort effects. Neurolmage, 2021, 226, 117596.	4.2	28
10	The Functional Foundations of Episodic Memory Remain Stable Throughout the Lifespan. Cerebral Cortex, 2021, 31, 2098-2110.	2.9	3
11	Asymmetric thinning of the cerebral cortex across the adult lifespan is accelerated in Alzheimer's disease. Nature Communications, 2021, 12, 721.	12.8	67
12	Cognitive reappraisal and expressive suppression relate differentially to longitudinal structural brain development across adolescence. Cortex, 2021, 136, 109-123.	2.4	11
13	Self-reported sleep relates to microstructural hippocampal decline in ĀŸ-amyloid positive Adults beyond genetic risk. Sleep, 2021, 44, .	1.1	5
14	Electrophysiological and behavioral indices of cognitive conflict processing across adolescence. Developmental Cognitive Neuroscience, 2021, 48, 100929.	4.0	11
15	Educational attainment does not influence brain aging. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118 , .	7.1	49
16	Development of attention networks from childhood to young adulthood: A study of performance, intraindividual variability and cortical thickness. Cortex, 2021, 138, 138-151.	2.4	12
17	The genetic organization of longitudinal subcortical volumetric change is stable throughout the lifespan. ELife, 2021, 10, .	6.0	7
18	Reliability and sensitivity of two whole-brain segmentation approaches included in FreeSurfer – ASEG and SAMSEG. NeuroImage, 2021, 237, 118113.	4.2	10

#	Article	IF	CITATIONS
19	Reduced Hippocampal-Striatal Interactions during Formation of Durable Episodic Memories in Aging. Cerebral Cortex, 2021, , .	2.9	5
20	Relationships between apparent cortical thickness and working memory across the lifespan - Effects of genetics and socioeconomic status. Developmental Cognitive Neuroscience, 2021, 51, 100997.	4.0	8
21	Poor Self-Reported Sleep is Related to Regional Cortical Thinning in Aging but not Memory Decline—Results From the Lifebrain Consortium. Cerebral Cortex, 2021, 31, 1953-1969.	2.9	25
22	Level of body fat relates to memory decline and interacts with age in its association with hippocampal and subcortical atrophy. Neurobiology of Aging, 2020, 91, 112-124.	3.1	9
23	Age-Related Differences in Functional Asymmetry During Memory Retrieval Revisited: No Evidence for Contralateral Overactivation or Compensation. Cerebral Cortex, 2020, 30, 1129-1147.	2.9	12
24	Corticosteroids and Regional Variations in Thickness of the Human Cerebral Cortex across the Lifespan. Cerebral Cortex, 2020, 30, 575-586.	2.9	13
25	Are People Ready for Personalized Brain Health? Perspectives of Research Participants in the Lifebrain Consortium. Gerontologist, The, 2020, 60, 1050-1059.	3.9	11
26	CSF sTREM2 and Tau Work Together in Predicting Increased Temporal Lobe Atrophy in Older Adults. Cerebral Cortex, 2020, 30, 2295-2306.	2.9	15
27	Self-reported sleep relates to hippocampal atrophy across the adult lifespan: results from the Lifebrain consortium. Sleep, 2020, 43, .	1.1	53
28	Genetic risk for Alzheimer disease predicts hippocampal volume through the human lifespan. Neurology: Genetics, 2020, 6, e506.	1.9	29
29	Longitudinal association between hippocampus atrophy and episodicâ€memory decline in nonâ€demented <i>APOE</i> ε4 carriers. Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring, 2020, 12, e12110.	2.4	11
30	Amyloid-PET and 18F-FDG-PET in the diagnostic investigation of Alzheimer's disease and other dementias. Lancet Neurology, The, 2020, 19, 951-962.	10.2	254
31	The Global Brain Health Survey: Development of a Multi-Language Survey of Public Views on Brain Health. Frontiers in Public Health, 2020, 8, 387.	2.7	8
32	Within-session verbal learning slope is predictive of lifespan delayed recall, hippocampal volume, and memory training benefit, and is heritable. Scientific Reports, 2020, 10, 21158.	3.3	1
33	Cellular correlates of cortical thinning throughout the lifespan. Scientific Reports, 2020, 10, 21803.	3.3	80
34	Methylphenidate Effects on Cortical Thickness in Children and Adults with Attention-Deficit/Hyperactivity Disorder: A Randomized Clinical Trial. American Journal of Neuroradiology, 2020, 41, 758-765.	2.4	11
35	Self-reported Sleep Problems Related to Amyloid Deposition in Cortical Regions with High HOMER1 Gene Expression. Cerebral Cortex, 2020, 30, 2144-2156.	2.9	13
36	Anterior and posterior hippocampus macro―and microstructure across the lifespan in relation to memory—A longitudinal study. Hippocampus, 2020, 30, 678-692.	1.9	50

3

#	Article	IF	CITATIONS
37	Biomarker profiling beyond amyloid and tau: cerebrospinal fluid markers, hippocampal atrophy, and memory change in cognitively unimpaired older adults. Neurobiology of Aging, 2020, 93, 1-15.	3.1	11
38	Maintained Frontal Activity Underlies High Memory Function Over 8 Years in Aging. Cerebral Cortex, 2019, 29, 3111-3123.	2.9	28
39	Error processing in the adolescent brain: Age-related differences in electrophysiology, behavioral adaptation, and brain morphology. Developmental Cognitive Neuroscience, 2019, 38, 100665.	4.0	28
40	Structural Variability in the Human Brain Reflects Fine-Grained Functional Architecture at the Population Level. Journal of Neuroscience, 2019, 39, 6136-6149.	3.6	29
41	Structural brain characteristics of anabolic–androgenic steroid dependence in men. Addiction, 2019, 114, 1405-1415.	3.3	31
42	Prosocial behavior relates to the rate and timing of cortical thinning from adolescence to young adulthood. Developmental Cognitive Neuroscience, 2019, 40, 100734.	4.0	17
43	Volumetric and microstructural regional changes of the hippocampus underlying development of recall performance after extended retention intervals. Developmental Cognitive Neuroscience, 2019, 40, 100723.	4.0	13
44	Waves of Maturation and Senescence in Micro-structural MRI Markers of Human Cortical Myelination over the Lifespan. Cerebral Cortex, 2019, 29, 1369-1381.	2.9	91
45	Continuity and Discontinuity in Human Cortical Development and Change From Embryonic Stages to Old Age. Cerebral Cortex, 2019, 29, 3879-3890.	2.9	27
46	High-Expanding Regions in Primate Cortical Brain Evolution Support Supramodal Cognitive Flexibility. Cerebral Cortex, 2019, 29, 3891-3901.	2.9	20
47	Development and Decline of the Hippocampal Long-Axis Specialization and Differentiation During Encoding and Retrieval of Episodic Memories. Cerebral Cortex, 2019, 29, 3398-3414.	2.9	19
48	A longitudinal study of computerized cognitive training in stroke patients – effects on cognitive function and white matter. Topics in Stroke Rehabilitation, 2018, 25, 241-247.	1.9	16
49	Healthy minds 0–100 years: Optimising the use of European brain imaging cohorts ("Lifebrainâ€). European Psychiatry, 2018, 50, 47-56.	0.2	53
50	Neuroinflammation and Tau Interact with Amyloid in Predicting Sleep Problems in Aging Independently of Atrophy. Cerebral Cortex, 2018, 28, 2775-2785.	2.9	40
51	The corpus callosum as anatomical marker of intelligence? A critical examination in a large-scale developmental study. Brain Structure and Function, 2018, 223, 285-296.	2.3	29
52	Parallel but independent reduction of emotional awareness and corpus callosum connectivity in older age. PLoS ONE, 2018, 13, e0209915.	2.5	12
53	Development of the P300 from childhood to adulthood: a multimodal EEG and MRI study. Brain Structure and Function, 2018, 223, 4337-4349.	2.3	16
54	The Lifespan Trajectory of the Encoding-Retrieval Flip: A Multimodal Examination of Medial Parietal Cortex Contributions to Episodic Memory. Journal of Neuroscience, 2018, 38, 8666-8679.	3.6	14

#	Article	IF	CITATIONS
55	Development of white matter microstructure in relation to verbal and visuospatial working memoryâ€"A longitudinal study. PLoS ONE, 2018, 13, e0195540.	2.5	48
56	The Temporal Dynamics of Brain Plasticity in Aging. Cerebral Cortex, 2018, 28, 1857-1865.	2.9	21
57	Multimodal cortical and hippocampal prediction of episodicâ€memory plasticity in young and older adults. Human Brain Mapping, 2018, 39, 4480-4492.	3.6	11
58	Social perspective taking is associated with self-reported prosocial behavior and regional cortical thickness across adolescence Developmental Psychology, 2018, 54, 1745-1757.	1.6	40
59	The Disconnected Brain and Executive Function Decline in Aging. Cerebral Cortex, 2017, 27, bhw082.	2.9	130
60	Through Thick and Thin: a Need to Reconcile Contradictory Results on Trajectories in Human Cortical Development. Cerebral Cortex, 2017, 27, bhv301.	2.9	171
61	Decoupling of large-scale brain networks supports the consolidation of durable episodic memories. Neurolmage, 2017, 153, 336-345.	4.2	16
62	Inflammation, Amyloid, and Atrophy in The Aging Brain: Relationships with Longitudinal Changes in Cognition. Journal of Alzheimer's Disease, 2017, 58, 829-840.	2.6	31
63	Neural correlates of durable memories across the adult lifespan: brain activity at encoding and retrieval. Neurobiology of Aging, 2017, 60, 20-33.	3.1	15
64	The effects of memory training on behavioral and microstructural plasticity in young and older adults. Human Brain Mapping, 2017, 38, 5666-5680.	3.6	43
65	CSF neurofilament light levels predict hippocampal atrophy in cognitively healthy older adults. Neurobiology of Aging, 2017, 49, 138-144.	3.1	60
66	Relationship between structural and functional connectivity change across the adult lifespan: A longitudinal investigation. Human Brain Mapping, 2017, 38, 561-573.	3.6	82
67	Organizing Principles of Human Cortical Developmentâ€"Thickness and Area from 4 to 30 Years: Insights from Comparative Primate Neuroanatomy. Cerebral Cortex, 2016, 26, 257-267.	2.9	148
68	Effects of change in FreeSurfer version on classification accuracy of patients with Alzheimer's disease and mild cognitive impairment. Human Brain Mapping, 2016, 37, 1831-1841.	3.6	30
69	Accelerated longitudinal gray/white matter contrast decline in aging in lightly myelinated cortical regions. Human Brain Mapping, 2016, 37, 3669-3684.	3.6	40
70	White matter integrity as a marker for cognitive plasticity in aging. Neurobiology of Aging, 2016, 47, 74-82.	3.1	56
71	Neurocognitive Outcome in Very Longâ€Term Survivors of Childhood Acute Lymphoblastic Leukemia After Treatment with Chemotherapy Only. Pediatric Blood and Cancer, 2016, 63, 133-138.	1.5	63
72	Neurodevelopmental origins of lifespan changes in brain and cognition. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 9357-9362.	7.1	163

#	Article	IF	Citations
73	Selective increase in posterior corpus callosum thickness between the age of 4 and 11 years. NeuroImage, 2016, 139, 17-25.	4.2	28
74	Brain Events Underlying Episodic Memory Changes in Aging: A Longitudinal Investigation of Structural and Functional Connectivity. Cerebral Cortex, 2016, 26, 1272-1286.	2.9	114
75	Diffusion tensor imaging and behavior in premature infants at 8 years of age, a randomized controlled trial with long-chain polyunsaturated fatty acids. Early Human Development, 2016, 95, 41-46.	1.8	24
76	Premises of plasticity â€" And the loneliness of the medial temporal lobe. NeuroImage, 2016, 131, 48-54.	4.2	16
77	Changes in white matter microstructure in the developing brain—A longitudinal diffusion tensor imaging study of children from 4 to 11 years of age. Neurolmage, 2016, 124, 473-486.	4.2	160
78	Intracortical Posterior Cingulate Myelin Content Relates to Error Processing: Results from $<$ i> $<$ 1/ $<$ 1/ $<$ 3ub>- and $<$ 1/ $<$ 3ub>- $<$ 2-Weighted MRI Myelin Mapping and Electrophysiology in Healthy Adults. Cerebral Cortex, 2016, 26, 2402-2410.	2.9	44
79	Longitudinal Changes in White Matter Tract Integrity across the Adult Lifespan and Its Relation to Cortical Thinning. PLoS ONE, 2016, 11, e0156770.	2.5	56
80	A Longitudinal Study of Disability, Cognition and Gray Matter Atrophy in Early Multiple Sclerosis Patients According to Evidence of Disease Activity. PLoS ONE, 2015, 10, e0135974.	2.5	41
81	Long-Chain Polyunsaturated Fatty Acids and Cognition in VLBW Infants at 8 years: an RCT. Pediatrics, 2015, 135, 972-980.	2.1	49
82	Maturation of Cortico-Subcortical Structural NetworksSegregation and Overlap of Medial Temporal and Fronto-Striatal Systems in Development. Cerebral Cortex, 2015, 25, 1835-1841.	2.9	32
83	Magnetic resonance imaging in Alzheimer's Disease Neuroimaging Initiative 2. Alzheimer's and Dementia, 2015, 11, 740-756.	0.8	142
84	High-Expanding Cortical Regions in Human Development and Evolution Are Related to Higher Intellectual Abilities. Cerebral Cortex, 2015, 25, 26-34.	2.9	104
85	Mechanisms Underlying Encoding of Short-Lived Versus Durable Episodic Memories. Journal of Neuroscience, 2015, 35, 5202-5212.	3.6	42
86	Development and aging of cortical thickness correspond to genetic organization patterns. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 15462-15467.	7.1	228
87	The Roots of Alzheimer's Disease: Are High-Expanding Cortical Areas Preferentially Targeted?. Cerebral Cortex, 2015, 25, 2556-2565.	2.9	16
88	Functional connectivity change across multiple cortical networks relates to episodic memory changes in aging. Neurobiology of Aging, 2015, 36, 3255-3268.	3.1	64
89	Child Neuroanatomical, Neurocognitive, and Visual Acuity Outcomes With Maternal Opioid and Polysubstance Detoxification. Pediatric Neurology, 2015, 52, 326-332.e3.	2.1	37
90	Cortical thickness and surface area relate to specific symptoms in early relapsing–remitting multiple sclerosis. Multiple Sclerosis Journal, 2015, 21, 402-414.	3.0	79

#	Article	IF	Citations
91	Bridging the gap between clinical neuroscience and cognitive rehabilitation: The role of cognitive training, models of neuroplasticity and advanced neuroimaging in future brain injury rehabilitation. NeuroRehabilitation, 2014, 34, 81-85.	1.3	16
92	Regional Hippocampal Volumes and Development Predict Learning and Memory. Developmental Neuroscience, 2014, 36, 161-174.	2.0	67
93	A common brain network links development, aging, and vulnerability to disease. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 17648-17653.	7.1	268
94	Differential Longitudinal Changes in Cortical Thickness, Surface Area and Volume across the Adult Life Span: Regions of Accelerating and Decelerating Change. Journal of Neuroscience, 2014, 34, 8488-8498.	3.6	450
95	Accelerating Cortical Thinning: Unique to Dementia or Universal in Aging?. Cerebral Cortex, 2014, 24, 919-934.	2.9	250
96	What is normal in normal aging? Effects of aging, amyloid and Alzheimer's disease on the cerebral cortex and the hippocampus. Progress in Neurobiology, 2014, 117, 20-40.	5.7	608
97	Accelerated Changes in White Matter Microstructure during Aging: A Longitudinal Diffusion Tensor Imaging Study. Journal of Neuroscience, 2014, 34, 15425-15436.	3.6	239
98	Poor sleep quality is associated with increased cortical atrophy in community-dwelling adults. Neurology, 2014, 83, 967-973.	1.1	176
99	Blood markers of fatty acids and vitamin D, cardiovascular measures, body mass index, and physical activity relate to longitudinal cortical thinning in normal aging. Neurobiology of Aging, 2014, 35, 1055-1064.	3.1	97
100	Effects of Cognitive Training on Gray Matter Volumes in Memory Clinic Patients with Subjective Memory Impairment. Journal of Alzheimer's Disease, 2014, 41, 779-791.	2.6	78
101	Development of hippocampal subfield volumes from 4 to 22 years. Human Brain Mapping, 2014, 35, 5646-5657.	3.6	82
102	Brain aging in humans, chimpanzees (Pan troglodytes), and rhesus macaques (Macaca mulatta): magnetic resonance imaging studies of macro- and microstructural changes. Neurobiology of Aging, 2013, 34, 2248-2260.	3.1	92
103	Brain development and aging: Overlapping and unique patterns of change. NeuroImage, 2013, 68, 63-74.	4.2	240
104	Critical ages in the life course of the adult brain: nonlinear subcortical aging. Neurobiology of Aging, 2013, 34, 2239-2247.	3.1	319
105	Brain Changes in Older Adults at Very Low Risk for Alzheimer's Disease. Journal of Neuroscience, 2013, 33, 8237-8242.	3.6	184
106	Intracortical Myelin Links with Performance Variability across the Human Lifespan: Results from T1-and T2-Weighted MRI Myelin Mapping and Diffusion Tensor Imaging. Journal of Neuroscience, 2013, 33, 18618-18630.	3.6	247
107	Becoming Consistent: Developmental Reductions in Intraindividual Variability in Reaction Time Are Related to White Matter Integrity. Journal of Neuroscience, 2012, 32, 972-982.	3.6	169
108	Long-term influence of normal variation in neonatal characteristics on human brain development. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 20089-20094.	7.1	158

#	Article	IF	CITATIONS
109	Dissociating Memory Processes in the Developing Brain: The Role of Hippocampal Volume and Cortical Thickness in Recall after Minutes versus Days. Cerebral Cortex, 2012, 22, 381-390.	2.9	48
110	Multimodal imaging of the self-regulating developing brain. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 19620-19625.	7.1	192
111	A multi-modal investigation of behavioral adjustment: Post-error slowing is associated with white matter characteristics. Neurolmage, 2012, 61, 195-205.	4.2	14
112	Benefits of multi-modal fusion analysis on a large-scale dataset: Life-span patterns of inter-subject variability in cortical morphometry and white matter microstructure. Neurolmage, 2012, 63, 365-380.	4.2	137
113	Neuroimaging Results Impose New Views on Alzheimer's Disease—the Role of Amyloid Revised. Molecular Neurobiology, 2012, 45, 153-172.	4.0	44
114	Consistent neuroanatomical age-related volume differences across multiple samples. Neurobiology of Aging, 2011, 32, 916-932.	3.1	437
115	Reduced White Matter Integrity Is Related to Cognitive Instability. Journal of Neuroscience, 2011, 31, 18060-18072.	3.6	113
116	Associations between Regional Cortical Thickness and Attentional Networks as Measured by the Attention Network Test. Cerebral Cortex, 2011, 21, 345-356.	2.9	140
117	New Tools for the Study of Alzheimer's Disease. Neuroscientist, 2011, 17, 592-605.	3.5	12
118	Cortical gray matter atrophy in healthy aging cannot be explained by undetected incipient cognitive disorders: A comment on Burgmans et al. (2009) Neuropsychology, 2010, 24, 258-263.	1.3	26
119	Neuroanatomical correlates of executive functions in children and adolescents: A magnetic resonance imaging (MRI) study of cortical thickness. Neuropsychologia, 2010, 48, 2496-2508.	1.6	135
120	CSF Biomarkers in Prediction of Cerebral and Clinical Change in Mild Cognitive Impairment and Alzheimer's Disease. Journal of Neuroscience, 2010, 30, 2088-2101.	3.6	188
121	When does brain aging accelerate? Dangers of quadratic fits in cross-sectional studies. NeuroImage, 2010, 50, 1376-1383.	4.2	222
122	Differentiating maturational and aging-related changes of the cerebral cortex by use of thickness and signal intensity. NeuroImage, 2010, 52, 172-185.	4.2	155
123	Effects of memory training on cortical thickness in the elderly. NeuroImage, 2010, 52, 1667-1676.	4.2	307
124	Brain Maturation in Adolescence and Young Adulthood: Regional Age-Related Changes in Cortical Thickness and White Matter Volume and Microstructure. Cerebral Cortex, 2010, 20, 534-548.	2.9	668
125	Brain Atrophy in Healthy Aging Is Related to CSF Levels of AÎ21-42. Cerebral Cortex, 2010, 20, 2069-2079.	2.9	102
126	CSF biomarker pathology correlates with a medial temporo-parietal network affected by very mild to moderate Alzheimer's disease but not a fronto-striatal network affected by healthy aging. NeuroImage, 2010, 49, 1820-1830.	4.2	27

#	Article	IF	CITATIONS
127	Structural Brain Changes in Aging: Courses, Causes and Cognitive Consequences. Reviews in the Neurosciences, 2010, 21, 187-221.	2.9	728
128	One-Year Brain Atrophy Evident in Healthy Aging. Journal of Neuroscience, 2009, 29, 15223-15231.	3.6	561
129	Heterogeneity in Subcortical Brain Development: A Structural Magnetic Resonance Imaging Study of Brain Maturation from 8 to 30 Years. Journal of Neuroscience, 2009, 29, 11772-11782.	3.6	423
130	High Consistency of Regional Cortical Thinning in Aging across Multiple Samples. Cerebral Cortex, 2009, 19, 2001-2012.	2.9	580
131	Minute Effects of Sex on the Aging Brain: A Multisample Magnetic Resonance Imaging Study of Healthy Aging and Alzheimer's Disease. Journal of Neuroscience, 2009, 29, 8774-8783.	3.6	111
132	Instability in the latency of P3a/P3b brain potentials and cognitive function in aging. Neurobiology of Aging, 2009, 30, 2065-2079.	3.1	43
133	Increased sensitivity to effects of normal aging and Alzheimer's disease on cortical thickness by adjustment for local variability in gray/white contrast: A multi-sample MRI study. NeuroImage, 2009, 47, 1545-1557.	4.2	103
134	The relationship between diffusion tensor imaging and volumetry as measures of white matter properties. Neurolmage, 2008, 42, 1654-1668.	4.2	136
135	Stability of brain potentials, mental abilities, and cortical thickness. NeuroReport, 2007, 18, 725-728.	1.2	7
136	Habituation of P3a and P3b brain potentials in men engaged in extreme sports. Biological Psychology, 2007, 75, 87-94.	2.2	17
137	Cognitive function, P3a/P3b brain potentials, and cortical thickness in aging. Human Brain Mapping, 2007, 28, 1098-1116.	3.6	51
138	White matter volume predicts reaction time instability. Neuropsychologia, 2007, 45, 2277-2284.	1.6	101
139	Selective increase of cortical thickness in high-performing elderly—structural indices of optimal cognitive aging. Neurolmage, 2006, 29, 984-994.	4.2	112
140	Age-dependent changes in distribution of P3a/P3b amplitude and thickness of the cerebral cortex. NeuroReport, 2005, 16, 1451-1454.	1.2	12
141	Basic information processing of neurotics and stables: An experimental ERP approach to personality and distractibility. Scandinavian Journal of Psychology, 2005, 46, 493-502.	1.5	8
142	Age-Differences in Verbal Recognition Memory Revealed by ERP. Clinical EEG and Neuroscience, 2005, 36, 176-187.	1.7	19
143	Age does not increase rate of forgetting over weeks—Neuroanatomical volumes and visual memory across the adult life-span. Journal of the International Neuropsychological Society, 2005, 11, 2-15.	1.8	30
144	Age-sensitivity of P3 in high-functioning adults. Neurobiology of Aging, 2005, 26, 1297-1299.	3.1	15

#	Article	IF	CITATIONS
145	Neuroanatomical aging: Universal but not uniform. Neurobiology of Aging, 2005, 26, 1279-1282.	3.1	93
146	Effects of age on volumes of cortex, white matter and subcortical structures. Neurobiology of Aging, 2005, 26, 1261-1270.	3.1	552
147	High versus average cognitive function: Implications for the age-sensitivity of P3. Neurobiology of Aging, 2005, 26, 1305-1306.	3.1	4
148	Thinking styles in relation to personality traits: An investigation of the Thinking Styles Inventory and NEO-PI-R. Scandinavian Journal of Psychology, 2004, 45, 293-300.	1.5	24
149	Lifeâ€span changes in P3a. Psychophysiology, 2004, 41, 575-583.	2.4	63
150	On the topography of P3a and P3b across the adult lifespan-a factor-analytic study using orthogonal procrustes rotation. Brain Topography, 2003, 15, 153-164.	1.8	24
151	Effects of auditory stimulus intensity and hearing threshold on the relationship among P300, age, and cognitive function. Clinical Neurophysiology, 2003, 114, 799-807.	1.5	38
152	P300 and neuropsychological tests as measures of aging: scalp topography and cognitive changes. Brain Topography, 2001, 14, 25-40.	1.8	118