Tamas Revesz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8378510/publications.pdf

Version: 2024-02-01

189 papers 24,573 citations

76 h-index 150 g-index

208 all docs

208 docs citations

208 times ranked $\begin{array}{c} 20830 \\ \text{citing authors} \end{array}$

#	Article	IF	CITATIONS
1	Parkinson's disease. Lancet, The, 2009, 373, 2055-2066.	13.7	1,835
2	Lewy bodies in grafted neurons in subjects with Parkinson's disease suggest host-to-graft disease propagation. Nature Medicine, 2008, 14, 501-503.	30.7	1,595
3	Nomenclature and nosology for neuropathologic subtypes of frontotemporal lobar degeneration: an update. Acta Neuropathologica, 2010, 119, 1-4.	7.7	854
4	Characteristics of two distinct clinical phenotypes in pathologically proven progressive supranuclear palsy: Richardson's syndrome and PSP-parkinsonism. Brain, 2005, 128, 1247-1258.	7.6	743
5	Glucocerebrosidase mutations in clinical and pathologically proven Parkinson's disease. Brain, 2009, 132, 1783-1794.	7.6	612
6	Identification of common variants influencing risk of the tauopathy progressive supranuclear palsy. Nature Genetics, 2011, 43, 699-705.	21.4	502
7	Lewy- and Alzheimer-type pathologies in Parkinson's disease dementia: which is more important?. Brain, 2011, 134, 1493-1505.	7.6	497
8	The spectrum of pathological involvement of the striatonigral and olivopontocerebellar systems in multiple system atrophy: clinicopathological correlations. Brain, 2004, 127, 2657-2671.	7.6	493
9	A stop-codon mutation in the BRI gene associated with familial British dementia. Nature, 1999, 399, 776-781.	27.8	467
10	Does corticobasal degeneration exist? A clinicopathological re-evaluation. Brain, 2010, 133, 2045-2057.	7.6	414
11	Structure-based classification of tauopathies. Nature, 2021, 598, 359-363.	27.8	409
12	The expression of DJ-1 (PARK7) in normal human CNS and idiopathic Parkinson's disease. Brain, 2004, 127, 420-430.	7.6	404
13	Frontotemporal dementia with the C9ORF72 hexanucleotide repeat expansion: clinical, neuroanatomical and neuropathological features. Brain, 2012, 135, 736-750.	7.6	392
14	A common LRRK2 mutation in idiopathic Parkinson's disease. Lancet, The, 2005, 365, 415-416.	13.7	391
15	Nomenclature for neuropathologic subtypes of frontotemporal lobar degeneration: consensus recommendations. Acta Neuropathologica, 2009, 117, 15-18.	7.7	377
16	α-Synucleinopathy associated with G51D SNCA mutation: a link between Parkinson's disease and multiple system atrophy?. Acta Neuropathologica, 2013, 125, 753-769.	7.7	369
17	Pathological tau burden and distribution distinguishes progressive supranuclear palsy-parkinsonism from Richardson's syndrome. Brain, 2007, 130, 1566-1576.	7.6	364
18	Neuropathology underlying clinical variability in patients with synucleinopathies. Acta Neuropathologica, 2011, 122, 187-204.	7.7	357

#	Article	IF	Citations
19	Relationships between age and late progression of Parkinson's disease: a clinico-pathological study. Brain, 2010, 133, 1755-1762.	7.6	349
20	Loss of VPS13C Function in Autosomal-Recessive Parkinsonism Causes Mitochondrial Dysfunction and Increases PINK1/Parkin-Dependent Mitophagy. American Journal of Human Genetics, 2016, 98, 500-513.	6.2	333
21	Clinicopathological investigation of vascular parkinsonism, including clinical criteria for diagnosis. Movement Disorders, 2004, 19, 630-640.	3.9	332
22	Mutations in the gene LRRK2 encoding dardarin (PARK8) cause familial Parkinson's disease: clinical, pathological, olfactory and functional imaging and genetic data. Brain, 2005, 128, 2786-2796.	7.6	315
23	Clinical and neuroanatomical signatures of tissue pathology in frontotemporal lobar degeneration. Brain, 2011, 134, 2565-2581.	7.6	306
24	Research in motion: the enigma of Parkinson's disease pathology spread. Nature Reviews Neuroscience, 2008, 9, 741-745.	10.2	296
25	C9orf72 expansions in frontotemporal dementia and amyotrophic lateral sclerosis. Lancet Neurology, The, 2015, 14, 291-301.	10.2	270
26	<i>SNCA</i> variants are associated with increased risk for multiple system atrophy. Annals of Neurology, 2009, 65, 610-614.	5.3	257
27	Genetics and molecular pathogenesis of sporadic and hereditary cerebral amyloid angiopathies. Acta Neuropathologica, 2009, 118, 115-130.	7.7	255
28	Cerebral Amyloid Angiopathies: A Pathologic, Biochemical, and Genetic View. Journal of Neuropathology and Experimental Neurology, 2003, 62, 885-898.	1.7	245
29	A distinct clinical, neuropsychological and radiological phenotype is associated with progranulin gene mutations in a large UK series. Brain, 2008, 131, 706-720.	7.6	222
30	FUS pathology defines the majority of tau- and TDP-43-negative frontotemporal lobar degeneration. Acta Neuropathologica, 2010, 120, 33-41.	7.7	222
31	Pure akinesia with gait freezing: A third clinical phenotype of progressive supranuclear palsy. Movement Disorders, 2007, 22, 2235-2241.	3.9	216
32	The genetics of Parkinson's syndromes: a critical review. Current Opinion in Genetics and Development, 2009, 19, 254-265.	3.3	195
33	Investigating the genetic architecture of dementia with Lewy bodies: a two-stage genome-wide association study. Lancet Neurology, The, 2018, 17, 64-74.	10.2	195
34	Mixed pathologies including chronic traumatic encephalopathy account for dementia in retired association football (soccer) players. Acta Neuropathologica, 2017, 133, 337-352.	7.7	193
35	Mutations in TTBK2, encoding a kinase implicated in tau phosphorylation, segregate with spinocerebellar ataxia type 11. Nature Genetics, 2007, 39, 1434-1436.	21.4	185
36	Widespread Lewy body and tau accumulation in childhood and adult onset dystonia-parkinsonism cases with PLA2G6 mutations. Neurobiology of Aging, 2012, 33, 814-823.	3.1	184

3

#	Article	IF	CITATIONS
37	Genetic analysis implicates APOE, SNCA and suggests lysosomal dysfunction in the etiology of dementia with Lewy bodies. Human Molecular Genetics, 2014, 23, 6139-6146.	2.9	178
38	Neurofilament inclusion body disease: a new proteinopathy?. Brain, 2003, 126, 2291-2303.	7.6	176
39	Neuropathological criteria of anti-lgLON5-related tauopathy. Acta Neuropathologica, 2016, 132, 531-543.	7.7	173
40	Sporadic and Familial Cerebral Amyloid Angiopathies. Brain Pathology, 2002, 12, 343-357.	4.1	172
41	Globular glial tauopathies (GGT): consensus recommendations. Acta Neuropathologica, 2013, 126, 537-544.	7.7	168
42	Review: An update on clinical, genetic and pathological aspects of frontotemporal lobar degenerations. Neuropathology and Applied Neurobiology, 2015, 41, 858-881.	3.2	168
43	Multiple system atrophy–parkinsonism with slow progression and prolonged survival: A diagnostic catch. Movement Disorders, 2012, 27, 1186-1190.	3.9	164
44	Conventional magnetic resonance imaging in confirmed progressive supranuclear palsy and multiple system atrophy. Movement Disorders, 2012, 27, 1754-1762.	3.9	163
45	Clinical phenotype and genetic associations in autosomal dominant familial Alzheimer's disease: a case series. Lancet Neurology, The, 2016, 15, 1326-1335.	10.2	163
46	Association of Autonomic Dysfunction With Disease Progression and Survival in Parkinson Disease. JAMA Neurology, 2017, 74, 970.	9.0	162
47	Characterization of tau positron emission tomography tracer [¹⁸ F]AVâ€1451 binding to postmortem tissue in Alzheimer's disease,Âprimary tauopathies, and other dementias. Alzheimer's and Dementia, 2016, 12, 1116-1124.	0.8	161
48	The midbrain to pons ratio. Neurology, 2013, 80, 1856-1861.	1.1	153
49	A multidisciplinary team approach to skull base chordomas. Journal of Neurosurgery, 2001, 95, 175-183.	1.6	151
50	Alphaâ€synuclein mRNA expression in oligodendrocytes in MSA. Glia, 2014, 62, 964-970.	4.9	149
51	Genetic Analysis of Inherited Leukodystrophies. JAMA Neurology, 2013, 70, 875.	9.0	147
52	Cortical α-synuclein load is associated with amyloid-β plaque burden in a subset of Parkinson's disease patients. Acta Neuropathologica, 2008, 115, 417-425.	7.7	146
53	Assessment of \hat{l}^2 -amyloid deposits in human brain: a study of the BrainNet Europe Consortium. Acta Neuropathologica, 2009, 117, 309-320.	7.7	143
54	A genome-wide association study in multiple system atrophy. Neurology, 2016, 87, 1591-1598.	1.1	139

#	Article	IF	Citations
55	Variant Alzheimer's disease with spastic paraparesis and cotton wool plaques is caused by PS-1 mutations that lead to exceptionally high amyloid-? concentrations. Annals of Neurology, 2000, 48, 806-808.	5.3	135
56	Testing an aetiological model of visual hallucinations in Parkinson's disease. Brain, 2011, 134, 3299-3309.	7.6	132
57	Regional Distribution of Amyloid-Bri Deposition and Its Association with Neurofibrillary Degeneration in Familial British Dementia. American Journal of Pathology, 2001, 158, 515-526.	3.8	127
58	Homozygosity for the C9orf72 GGGCCC repeat expansion in frontotemporal dementia. Acta Neuropathologica, 2013, 126, 401-409.	7.7	126
59	UCHL-1is not a Parkinson's disease susceptibility gene. Annals of Neurology, 2006, 59, 627-633.	5.3	123
60	A pathway-based analysis provides additional support for an immune-related genetic susceptibility to Parkinson's disease. Human Molecular Genetics, 2013, 22, 1039-1049.	2.9	122
61	Parkin Disease. JAMA Neurology, 2013, 70, 571.	9.0	119
62	Familial Danish Dementia: A Novel Form of Cerebral Amyloidosis Associated with Deposition of Both Amyloid-Dan and Amyloid-Beta. Journal of Neuropathology and Experimental Neurology, 2002, 61, 254-267.	1.7	116
63	A Novel Prion Disease Associated with Diarrhea and Autonomic Neuropathy. New England Journal of Medicine, 2013, 369, 1904-1914.	27.0	113
64	Regional differences in the severity of Lewy body pathology across the olfactory cortex. Neuroscience Letters, 2009, 453, 77-80.	2.1	110
65	Astrogliopathy predominates the earliest stage of corticobasal degeneration pathology. Brain, 2016, 139, 3237-3252.	7.6	107
66	Disentangling the Relationship between Lewy Bodies and Nigral Neuronal Loss in Parkinson's Disease. Journal of Parkinson's Disease, 2011, 1, 277-286.	2.8	106
67	Familial British dementia with amyloid angiopathy. Brain, 2000, 123, 975-991.	7.6	104
68	Skull base chordomas: A review of 38 patients, 1958–88. British Journal of Neurosurgery, 1993, 7, 241-248.	0.8	102
69	A multidisciplinary team approach to skull base chondrosarcomas. Journal of Neurosurgery, 2001, 95, 184-189.	1.6	100
70	Diagnosis Across the Spectrum of Progressive Supranuclear Palsy and Corticobasal Syndrome. JAMA Neurology, 2020, 77, 377.	9.0	94
71	Somatic and germline mosaicism in sporadic early-onset Alzheimer's disease. Human Molecular Genetics, 2004, 13, 1219-1224.	2.9	93
72	Histological evidence of chronic traumatic encephalopathy in a large series of neurodegenerative diseases. Acta Neuropathologica, 2015, 130, 891-893.	7.7	92

#	Article	IF	Citations
73	An immunohistochemical study of cases of sporadic and inherited frontotemporal lobar degeneration using 3R- and 4R-specific tau monoclonal antibodies. Acta Neuropathologica, 2006, 111, 329-340.	7.7	91
74	Neuropathy target esterase impairments cause Oliver–McFarlane and Laurence–Moon syndromes. Journal of Medical Genetics, 2015, 52, 85-94.	3.2	91
75	Distinct clinical and neuropathological features of G51D SNCA mutation cases compared with SNCA duplication and H50Q mutation. Molecular Neurodegeneration, 2015, 10, 41.	10.8	90
76	Age-dependent formation of TMEM106B amyloid filaments in human brains. Nature, 2022, 605, 310-314.	27.8	88
77	Genetic variability at the PARK16 locus. European Journal of Human Genetics, 2010, 18, 1356-1359.	2.8	85
78	The Significance of \hat{l} ±-Synuclein, Amyloid- \hat{l}^2 and Tau Pathologies in Parkinson's Disease Progression and Related Dementia. Neurodegenerative Diseases, 2014, 13, 154-156.	1.4	83
79	The Spread of Neurodegenerative Disease. New England Journal of Medicine, 2012, 366, 2126-2128.	27.0	80
80	Alterations in global <scp>DNA</scp> methylation and hydroxymethylation are not detected in <scp>A</scp> lzheimer's disease. Neuropathology and Applied Neurobiology, 2015, 41, 497-506.	3.2	78
81	Genome-wide analysis of genetic correlation in dementia with Lewy bodies, Parkinson's and Alzheimer's diseases. Neurobiology of Aging, 2016, 38, 214.e7-214.e10.	3.1	78
82	A Pathogenic Presenilin-1 Deletion Causes Abberrant A $\hat{1}^2$ 42 Production in the Absence of Congophilic Amyloid Plaques. Journal of Biological Chemistry, 2001, 276, 7233-7239.	3.4	76
83	A comparative clinical, pathological, biochemical and genetic study of fused in sarcoma proteinopathies. Brain, 2011, 134, 2548-2564.	7.6	76
84	Evaluating the relationship between amyloid-β and α-synuclein phosphorylated at Ser129 in dementia with Lewy bodies and Parkinson's disease. Alzheimer's Research and Therapy, 2014, 6, 77.	6.2	74
85	Systemic Amyloid Deposits in Familial British Dementia. Journal of Biological Chemistry, 2001, 276, 43909-43914.	3.4	73
86	Identification and Quantification of Oligodendrocyte Precursor Cells in Multiple System Atrophy, Progressive Supranuclear Palsy and <scp>P</scp> arkinson's Disease. Brain Pathology, 2013, 23, 263-273.	4.1	69
87	Neuropathological findings in benign tremulous Parkinsonism. Movement Disorders, 2013, 28, 145-152.	3.9	68
88	Globular glial tauopathies (GGT) presenting with motor neuron disease or frontotemporal dementia: an emerging group of 4-repeat tauopathies. Acta Neuropathologica, 2011, 122, 415-428.	7.7	67
89	Duplication of amyloid precursor protein (APP), but not prion protein (PRNP) gene is a significant cause of early onset dementia in a large UK series. Neurobiology of Aging, 2012, 33, 426.e13-426.e21.	3.1	67
90	Brain biopsy in dementia: clinical indications and diagnostic approach. Acta Neuropathologica, 2010, 120, 327-341.	7.7	64

#	Article	IF	Citations
91	Clinical, pathological and functional characterization of riboflavin-responsive neuropathy. Brain, 2017, 140, 2820-2837.	7.6	64
92	Genetic determinants of survival in progressive supranuclear palsy: a genome-wide association study. Lancet Neurology, The, 2021, 20, 107-116.	10.2	62
93	The MAPT p.A152T variant is a risk factor associated with tauopathies with atypical clinical and neuropathological features. Neurobiology of Aging, 2012, 33, 2231.e7-2231.e14.	3.1	60
94	A 6.4 Mb Duplication of the $\hat{l}\pm$ -Synuclein Locus Causing Frontotemporal Dementia and Parkinsonism. JAMA Neurology, 2014, 71, 1162.	9.0	60
95	Complement Activation in Chromosome 13 Dementias. Journal of Biological Chemistry, 2002, 277, 49782-49790.	3.4	59
96	Familial Danish Dementia. Journal of Biological Chemistry, 2005, 280, 36883-36894.	3.4	59
97	Transportin1: a marker of FTLD-FUS. Acta Neuropathologica, 2011, 122, 591-600.	7.7	58
98	<i>C9ORF72</i> expansions, parkinsonism, and Parkinson disease. Neurology, 2013, 81, 808-811.	1.1	57
99	Central benzodiazepine receptor autoradiography in hippocampal sclerosis. British Journal of Pharmacology, 1997, 122, 358-364.	5.4	55
100	Clinical and pathological features of an Alzheimer's disease patient with the MAPT Î"K280 mutation. Neurobiology of Aging, 2009, 30, 388-393.	3.1	55
101	A novel presenilin mutation (M233V) causing very early onset Alzheimer's disease with Lewy bodies. Neuroscience Letters, 2001, 313, 93-95.	2.1	54
102	Genetic determinants of white matter hyperintensities and amyloid angiopathy in familial Alzheimer's disease. Neurobiology of Aging, 2015, 36, 3140-3151.	3.1	53
103	MAPT S305I mutation: implications for argyrophilic grain disease. Acta Neuropathologica, 2008, 116, 103-118.	7.7	52
104	Parietal Lobe Deficits in Frontotemporal Lobar Degeneration Caused by a Mutation in the Progranulin Gene. Archives of Neurology, 2008, 65, 506.	4.5	52
105	Sequence, genomic structure and tissue expression of Human BRI 3 , a member of the BRI gene family. Gene, 2001, 266, 95-102.	2.2	50
106	Screening a UK amyotrophic lateral sclerosis cohort provides evidence of multiple origins of the C9orf72 expansion. Neurobiology of Aging, 2015, 36, 546.e1-546.e7.	3.1	48
107	Primum non nocere: a call for balance when reporting on CTE. Lancet Neurology, The, 2019, 18, 231-233.	10.2	48
108	Minimal change multiple system atrophy: An aggressive variant?. Movement Disorders, 2015, 30, 960-967.	3.9	45

#	Article	IF	Citations
109	LATE to the PART-y. Brain, 2019, 142, e47-e47.	7.6	44
110	LRRK2 and parkin immunoreactivity in multiple system atrophy inclusions. Acta Neuropathologica, 2008, 116, 639-646.	7.7	43
111	Hyposmia in progressive supranuclear palsy. Movement Disorders, 2010, 25, 570-577.	3.9	43
112	White matter DNA methylation profiling reveals deregulation of HIP1, LMAN2, MOBP, and other loci in multiple system atrophy. Acta Neuropathologica, 2020, 139, 135-156.	7.7	42
113	The phagocytic capacity of neurones. European Journal of Neuroscience, 2007, 25, 2947-2955.	2.6	41
114	TDP-43 pathology in a patient carrying G2019S LRRK2Âmutation and a novel p.Q124E MAPT. Neurobiology of Aging, 2013, 34, 2889.e5-2889.e9.	3.1	41
115	Brain Amyloid-Beta Fragment Signatures in Pathological Ageing and Alzheimer's Disease by Hybrid Immunoprecipitation Mass Spectrometry. Neurodegenerative Diseases, 2015, 15, 50-57.	1.4	41
116	Glucocerebrosidase mutations do not cause increased Lewy body pathology in Parkinson's disease. Molecular Genetics and Metabolism, 2011, 103, 410-412.	1.1	40
117	Pathological correlates of white matter hyperintensities in a case of progranulin mutation associated frontotemporal dementia. Neurocase, 2018, 24, 166-174.	0.6	40
118	The analysis of C9orf72 repeat expansions in a large series of clinically and pathologically diagnosed cases with atypical parkinsonism. Neurobiology of Aging, 2015, 36, 1221.e1-1221.e6.	3.1	39
119	Neuronal intranuclear inclusion disease is genetically heterogeneous. Annals of Clinical and Translational Neurology, 2020, 7, 1716-1725.	3.7	38
120	A pathogenic <i>progranulin</i> mutation and <scp><i>C9orf72</i> repeat expansion in a family with frontotemporal dementia. Neuropathology and Applied Neurobiology, 2014, 40, 502-513.</scp>	3.2	37
121	Variation at the <i>TRIM11</i> locus modifies progressive supranuclear palsy phenotype. Annals of Neurology, 2018, 84, 485-496.	5.3	37
122	Adult-Onset Neurodegeneration With Brain Iron Accumulation and Cortical α-Synuclein and Tau Pathology. Archives of Neurology, 2007, 64, 280.	4.5	35
123	Impulsiveâ€compulsive spectrum behaviors in pathologically confirmed progressive supranuclear palsy. Movement Disorders, 2010, 25, 638-642.	3.9	33
124	Difference in MSA Phenotype Distribution between Populations: Genetics or Environment?. Journal of Parkinson's Disease, 2012, 2, 7-18.	2.8	33
125	DJ-1 (PARK7) is associated with 3R and 4R tau neuronal and glial inclusions in neurodegenerative disorders. Neurobiology of Disease, 2007, 28, 122-132.	4.4	32
126	The clinical and neuroanatomical phenotype of FUS associated frontotemporal lobar degeneration. Journal of Neurology, Neurosurgery and Psychiatry, 2011, 82, 1405-1407.	1.9	32

#	Article	IF	Citations
127	Serotonergic markers in Parkinson's disease and levodopaâ€induced dyskinesias. Movement Disorders, 2015, 30, 796-804.	3.9	32
128	Dissecting the Phenotype and Genotype of <scp><i>PLA2G6</i></scp> â€Related Parkinsonism. Movement Disorders, 2022, 37, 148-161.	3.9	32
129	A 30-unit hexanucleotide repeat expansion in C9orf72 induces pathological lesions with dipeptide-repeat proteins and RNA foci, but not TDP-43 inclusions and clinical disease. Acta Neuropathologica, 2015, 130, 599-601.	7.7	31
130	Apomorphine: A potential modifier of amyloid deposition in Parkinson's disease?. Movement Disorders, 2016, 31, 668-675.	3.9	31
131	Sporadic four-repeat tauopathy with frontotemporal degeneration, parkinsonism and motor neuron disease. Acta Neuropathologica, 2005, 110, 600-609.	7.7	30
132	Chromosome 13 dementia syndromes as models of neurodegeneration. Amyloid: the International Journal of Experimental and Clinical Investigation: the Official Journal of the International Society of Amyloidosis, 2001, 8, 277-284.	3.0	29
133	Heritability and genetic variance of dementia with Lewy bodies. Neurobiology of Disease, 2019, 127, 492-501.	4.4	29
134	The clinical, neuroanatomical, and neuropathologic phenotype of <i>TBK1</i> à€essociated frontotemporal dementia: A longitudinal case report. Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring, 2017, 6, 75-81.	2.4	28
135	The aftermath of boxing revisited: identifying chronic traumatic encephalopathy pathology in the original Corsellis boxer series. Acta Neuropathologica, 2018, 136, 973-974.	7.7	28
136	Neuropathological and Biomarker Findings in Parkinson's Disease and Alzheimer's Disease: From Protein Aggregates to Synaptic Dysfunction. Journal of Parkinson's Disease, 2021, 11, 107-121.	2.8	28
137	Analysis of neurodegenerative disease-causing genes in dementia with Lewy bodies. Acta Neuropathologica Communications, 2020, 8, 5.	5.2	27
138	Genetic variation at the tau locus and clinical syndromes associated with progressive supranuclear palsy. Movement Disorders, 2007, 22, 895-897.	3.9	25
139	Multiple system atrophy is not caused by C9orf72 hexanucleotide repeat expansions. Neurobiology of Aging, 2015, 36, 1223.e1-1223.e2.	3.1	25
140	Neuropathological assessments of the pathology in frontotemporal lobar degeneration with TDP43-positive inclusions: an inter-laboratory study by the BrainNet Europe consortium. Journal of Neural Transmission, 2015, 122, 957-972.	2.8	25
141	Preferential association of serum amyloid P component with fibrillar deposits in familial British and Danish dementias: Similarities with Alzheimer's disease. Journal of the Neurological Sciences, 2007, 257, 88-96.	0.6	24
142	Can olfactory bulb biopsy be justified for the diagnosis of Parkinson's disease? Comments on "olfactory bulb α-synucleinopathy has high specificity and sensitivity for Lewy body disorders― Acta Neuropathologica, 2009, 117, 213-214.	7.7	23
143	Tau acts as an independent genetic risk factor in pathologically proven PD. Neurobiology of Aging, 2012, 33, 838.e7-838.e11.	3.1	23
144	MM2 subtype of sporadic Creutzfeldt-Jakob disease may underlie the clinical presentation of progressive supranuclear palsy. Journal of Neurology, 2013, 260, 1031-1036.	3.6	22

#	Article	IF	Citations
145	Spontaneous ARIA (Amyloid-Related Imaging Abnormalities) and Cerebral Amyloid Angiopathy Related Inflammation in Presenilin 1-Associated Familial Alzheimer's Disease. Journal of Alzheimer's Disease, 2015, 44, 1069-1074.	2.6	22
146	Concomitant progressive supranuclear palsy and chronic traumatic encephalopathy in a boxer. Acta Neuropathologica Communications, 2014, 2, 24.	5.2	21
147	Anatamopathological spectrum of tauopathies. Movement Disorders, 2003, 18, 13-20.	3.9	20
148	Temporal Variant Frontotemporal Dementia Is Associated with Globular Glial Tauopathy. Cognitive and Behavioral Neurology, 2015, 28, 92-97.	0.9	20
149	Concomitant fragile X-associated tremor ataxia syndrome and Parkinson's disease: a clinicopathological report of two cases: TableÂ1. Journal of Neurology, Neurosurgery and Psychiatry, 2015, 86, 934-936.	1.9	20
150	The presence of heterogeneous nuclear ribonucleoproteins in frontotemporal lobar degeneration with FUS-positive inclusions. Neurobiology of Aging, 2016, 46, 192-203.	3.1	20
151	Concomitant progressive supranuclear palsy and multiple system atrophy: More than a simple twist of fate?. Neuroscience Letters, 2009, 467, 208-211.	2.1	19
152	A novel <i>TBK1</i> mutation in a family with diverse frontotemporal dementia spectrum disorders. Journal of Physical Education and Sports Management, 2019, 5, a003913.	1.2	19
153	UCHL-1 gene in multiple system atrophy: A haplotype tagging approach. Movement Disorders, 2005, 20, 1338-1343.	3.9	17
154	Mutational analysis of parkin and PINK1 in multiple system atrophy. Neurobiology of Aging, 2011, 32, 548.e5-548.e7.	3.1	16
155	The genetic and clinicoâ€pathological profile of earlyâ€onset progressive supranuclear palsy. Movement Disorders, 2019, 34, 1307-1314.	3.9	16
156	CEREBRAL AMYLOID ANGIOPATHY AND ALZHEIMER'S DISEASE. Hirosaki Medical Journal, 2010, 61, S111-S124.	1.0	16
157	NR4A2 genetic variation in sporadic Parkinson's disease: A genewide approach. Movement Disorders, 2006, 21, 1960-1963.	3.9	15
158	Fulminant corticobasal degeneration: a distinct variant with predominant neuronal tau aggregates. Acta Neuropathologica, 2020, 139, 717-734.	7.7	15
159	A Case of Sporadic Pick Disease With Onset at 27 Years. Archives of Neurology, 1999, 56, 1289.	4.5	14
160	Abundant pyroglutamate-modified ABri and ADan peptides in extracellular and vascular amyloid deposits in familial British and Danish dementias. Neurobiology of Aging, 2013, 34, 1416-1425.	3.1	14
161	A comprehensive screening of copy number variability in dementia with Lewy bodies. Neurobiology of Aging, 2019, 75, 223.e1-223.e10.	3.1	13
162	Analysis of C9orf72 repeat expansions in a large international cohort of dementia with Lewy bodies. Neurobiology of Aging, 2017, 49, 214.e13-214.e15.	3.1	12

#	Article	IF	Citations
163	Parkinson's disease without nigral degeneration: a pathological correlate of scans without evidence of dopaminergic deficit (SWEDD)?. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, 633-641.	1.9	11
164	MOBP and HIP1 in multiple system atrophy: New αâ€synuclein partners in glial cytoplasmic inclusions implicated in the disease pathogenesis. Neuropathology and Applied Neurobiology, 2021, 47, 640-652.	3.2	11
165	Exome sequencing reveals a novel partial deletion in the progranulin gene causing primary progressive aphasia. Journal of Neurology, Neurosurgery and Psychiatry, 2013, 84, 1411-1412.	1.9	9
166	<scp>TDP</scp> â€43 pathology is present in most postâ€encephalitic parkinsonism brains. Neuropathology and Applied Neurobiology, 2014, 40, 654-657.	3.2	9
167	The presubiculum is preserved from neurodegenerative changes in Alzheimer's disease. Acta Neuropathologica Communications, 2018, 6, 62.	5.2	9
168	Prion-like α-synuclein pathology in the brain of infants with Krabbe disease. Brain, 2022, 145, 1257-1263.	7.6	9
169	Familial and sporadic cerebral amyloid angiopathies associated with dementia and the BRI dementias. , 2004, , 330-352.		8
170	Diseases of movement and system degenerations. , 2008, , 889-1030.		8
171	Axonal lesions in multiple sclerosis: an old story revisited. Brain, 2000, 123, 203-204.	7.6	7
172	Tau Isoform-Driven CBD Pathology Transmission in Oligodendrocytes in Humanized Tau Mice. Frontiers in Neurology, 2020, 11, 589471.	2.4	5
173	Association of clusterin with the BRI2-derived amyloid molecules ABri and ADan. Neurobiology of Disease, 2021, 158, 105452.	4.4	5
174	Fibrillation and molecular characteristics are coherent with clinical and pathological features of 4-repeat tauopathy caused by MAPT variant G273R. Neurobiology of Disease, 2020, 146, 105079.	4.4	4
175	Detecting tau isoforms in archival cases. Acta Neuropathologica, 2004, 107, 181-182.	7.7	3
176	TDP-43 pathology may occur in the BRI2 gene-related dementias. Acta Neuropathologica, 2011, 121, 559-560.	7.7	3
177	A Clinicopathologic Study of Movement Disorders in Frontotemporal Lobar Degeneration. Movement Disorders, 2021, 36, 632-641.	3.9	3
178	Variant Alzheimer's disease with spastic paraparesis and cotton wool plaques is caused by PSâ€1 mutations that lead to exceptionally high amyloidâ€Î² concentrations. Annals of Neurology, 2000, 48, 806-808.	5.3	3
179	Postural instability, frontotemporal dementia, and ophthalmoplegia: Clinicopathological case. Movement Disorders, 2011, 26, 1808-1813.	3.9	2
180	The more cortical amyloid $\hat{\mathbf{e}}\hat{\mathbf{l}}^2$, the more postural instability in parkinson's disease: More grist to the mill for a link between walking, falling, and remembering?. Movement Disorders, 2013, 28, 263-264.	3.9	2

#	Article	IF	CITATIONS
181	Lesions Associated with Cognitive Impairment and Dementia. , 2010, , 261-287.		1
182	PYROGLUTAMATE FORMATION AT THE N-TERMINI OF ABRI MOLECULES IN FAMILIAL BRITISH DEMENTIA IS NOT RESTRICTED TO THE CENTRAL NERVOUS SYSTEM. Hirosaki Medical Journal, 2010, 61, S262-S269.	1.0	1
183	Familial British Dementia., 0,, 487-493.		0
184	A Decamer Duplication in the BRI Gene Originates a de novo Amyloid Peptide that Causes Dementia in a Danish Kindred., 0,, 507-513.		0
185	A NOVEL TAUOPATHY PRESENTING WITH A MOTOR NEURONE DISEASE PHENOTYPE. Journal of Neurology, Neurosurgery and Psychiatry, 2013, 84, e2.123-e2.	1.9	0
186	Reply to letter: multiple system atrophy-parkinsonism with slow progression and prolonged survival: A diagnostic catch. Movement Disorders, 2013, 28, 408-408.	3.9	0
187	[P2–441]: PATHOLOGICAL CORRELATES OF WHITE MATTER HYPERINTENSITIES ON CADAVERIC MRI IN PROGRANULINâ€ASSOCIATED FRONTOTEMPORAL DEMENTIA. Alzheimer's and Dementia, 2017, 13, P805.	0.8	0
188	[P2–158]: IS THE PRESUBICULUM PROTECTED FROM NEURODEGENERATIVE CHANGES? A PATHOLOGICAL AN BIOCHEMICAL INVESTIGATION. Alzheimer's and Dementia, 2017, 13, P668.	D _{0.8}	0
189	1115â€Chronic traumatic encephalopathy in retired footballers with dementia. Journal of Neurology, Neurosurgery and Psychiatry, 2017, 88, A1.1-A1.	1.9	0