List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8378361/publications.pdf Version: 2024-02-01

		28274	18647
122	18,313	55	119
papers	citations	h-index	g-index
127	127	127	12922
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Landscape moderation of biodiversity patterns and processes ―eight hypotheses. Biological Reviews, 2012, 87, 661-685.	10.4	1,443
2	Ecological intensification: harnessing ecosystem services for food security. Trends in Ecology and Evolution, 2013, 28, 230-238.	8.7	1,325
3	How effective are European agri-environment schemes in conserving and promoting biodiversity?. Journal of Applied Ecology, 2003, 40, 947-969.	4.0	1,187
4	Mixed biodiversity benefits of agri-environment schemes in five European countries. Ecology Letters, 2006, 9, 243-254.	6.4	812
5	The role of agriâ€environment schemes in conservation and environmental management. Conservation Biology, 2015, 29, 1006-1016.	4.7	687
6	Delivery of crop pollination services is an insufficient argument for wild pollinator conservation. Nature Communications, 2015, 6, 7414.	12.8	656
7	On the relationship between farmland biodiversity and land-use intensity in Europe. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 903-909.	2.6	624
8	Non-bee insects are important contributors to global crop pollination. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 146-151.	7.1	618
9	Conservation biological control and enemy diversity on a landscape scale. Biological Control, 2007, 43, 294-309.	3.0	531
10	Agri-environment schemes do not effectively protect biodiversity in Dutch agricultural landscapes. Nature, 2001, 413, 723-725.	27.8	526
11	A global synthesis reveals biodiversity-mediated benefits for crop production. Science Advances, 2019, 5, eaax0121.	10.3	524
12	Does conservation on farmland contribute to halting the biodiversity decline?. Trends in Ecology and Evolution, 2011, 26, 474-481.	8.7	522
13	Landscape-moderated biodiversity effects of agri-environmental management: a meta-analysis. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 1894-1902.	2.6	460
14	Diversity of flower-visiting bees in cereal fields: effects of farming system, landscape composition and regional context. Journal of Applied Ecology, 2006, 44, 41-49.	4.0	381
15	Environmental factors driving the effectiveness of European agriâ€environmental measures in mitigating pollinator loss – a metaâ€analysis. Ecology Letters, 2013, 16, 912-920.	6.4	378
16	The interplay of landscape composition and configuration: new pathways to manage functional biodiversity and agroecosystem services across Europe. Ecology Letters, 2019, 22, 1083-1094.	6.4	364
17	From research to action: enhancing crop yield through wild pollinators. Frontiers in Ecology and the Environment, 2014, 12, 439-447.	4.0	363
18	The effectiveness of flower strips and hedgerows on pest control, pollination services and crop yield: a quantitative synthesis. Ecology Letters, 2020, 23, 1488-1498.	6.4	319

#	Article	IF	CITATIONS
19	Ecological Intensification: Bridging the Gap between Science and Practice. Trends in Ecology and Evolution, 2019, 34, 154-166.	8.7	318
20	Museum specimens reveal loss of pollen host plants as key factor driving wild bee decline in The Netherlands. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 17552-17557.	7.1	264
21	Local and landscapeâ€level floral resources explain effects of wildflower strips on wild bees across four European countries. Journal of Applied Ecology, 2015, 52, 1165-1175.	4.0	208
22	A RETROSPECTIVE ANALYSIS OF POLLEN HOST PLANT USE BY STABLE AND DECLINING BUMBLE BEE SPECIES. Ecology, 2008, 89, 1811-1823.	3.2	200
23	Massâ€flowering crops dilute pollinator abundance in agricultural landscapes across Europe. Ecology Letters, 2016, 19, 1228-1236.	6.4	195
24	Effectiveness of the Swiss agri-environment scheme in promoting biodiversity. Journal of Applied Ecology, 2005, 43, 120-127.	4.0	189
25	Spider diversity in cereal fields: comparing factors at local, landscape and regional scales. Journal of Biogeography, 2005, 32, 2007-2014.	3.0	183
26	The Swiss agri-environment scheme enhances pollinator diversity and plant reproductive success in nearby intensively managed farmland. Journal of Applied Ecology, 2007, 44, 813-822.	4.0	179
27	Ecological Effectiveness of Agri-Environment Schemes in Different Agricultural Landscapes in The Netherlands. Conservation Biology, 2004, 18, 775-786.	4.7	177
28	International scientists formulate a roadmap for insect conservation and recovery. Nature Ecology and Evolution, 2020, 4, 174-176.	7.8	176
29	Harnessing the biodiversity value of Central and Eastern European farmland. Diversity and Distributions, 2015, 21, 722-730.	4.1	172
30	Agricultural Policies Exacerbate Honeybee Pollination Service Supply-Demand Mismatches Across Europe. PLoS ONE, 2014, 9, e82996.	2.5	171
31	Interacting effects of landscape context and habitat quality on flower visiting insects in agricultural landscapes. Basic and Applied Ecology, 2006, 7, 201-214.	2.7	165
32	At what spatial scale do highâ€quality habitats enhance the diversity of forbs and pollinators in intensively farmed landscapes?. Journal of Applied Ecology, 2008, 45, 753-762.	4.0	164
33	Alpha and beta diversity of arthropods and plants in organically and conventionally managed wheat fields. Journal of Applied Ecology, 2007, 44, 804-812.	4.0	150
34	Field Boundary Vegetation and the Effects of Agrochemical Drift: Botanical Change Caused by Low Levels of Herbicide and Fertilizer. Journal of Applied Ecology, 1997, 34, 1413.	4.0	148
35	Factors affecting the species composition of arable field boundary vegetation. Journal of Applied Ecology, 2000, 37, 256-266.	4.0	148
36	Relationship between land-use intensity and species richness and abundance of birds in Hungary. Agriculture, Ecosystems and Environment, 2004, 104, 465-473.	5.3	143

#	Article	IF	CITATIONS
37	Effect of conservation management on bees and insect-pollinated grassland plant communities in three European countries. Agriculture, Ecosystems and Environment, 2010, 136, 35-39.	5.3	122
38	Pollinator conservation—the difference between managing for pollination services and preserving pollinator diversity. Current Opinion in Insect Science, 2015, 12, 93-101.	4.4	118
39	Conservation headlands for rare arable weeds: The effects of fertilizer application and light penetration on plant growth. Biological Conservation, 1997, 81, 57-67.	4.1	102
40	Interactive effects of landscape context constrain the effectiveness of local agriâ€environmental management. Journal of Applied Ecology, 2012, 49, 695-705.	4.0	100
41	Species groups occupying different trophic levels respond differently to the invasion of semi-natural vegetation by Solidago canadensis. Biological Conservation, 2007, 136, 612-617.	4.1	89
42	A horizon scanning assessment of current and potential future threats to migratory shorebirds. Ibis, 2012, 154, 663-679.	1.9	89
43	Declining Biodiversity in Agricultural Landscapes and the Effectiveness of Agri-environment Schemes. Ambio, 2004, 33, 499-502.	5.5	87
44	In search for key biogeochemical factors affecting plant species persistence in heathland and acidic grasslands: a comparison of common and rare species. Journal of Applied Ecology, 2008, 45, 680-687.	4.0	86
45	Direct and indirect effects of the most widely implemented Dutch agri-environment schemes on breeding waders. Journal of Applied Ecology, 2006, 44, 70-80.	4.0	83
46	Adverse effects of agricultural intensification and climate change on breeding habitat quality of Blackâ€ŧailed Godwits <i>Limosa l. limosa</i> in the Netherlands. Ibis, 2010, 152, 475-486.	1.9	80
47	A critical analysis of the potential for EU Common Agricultural Policy measures to support wild pollinators on farmland. Journal of Applied Ecology, 2020, 57, 681-694.	4.0	77
48	Effects of local and landscape scale and cattle grazing intensity on Orthoptera assemblages of the Hungarian Great Plain. Basic and Applied Ecology, 2007, 8, 280-290.	2.7	76
49	Contrasting effects of grazing and hay cutting on the spatial and genetic population structure of Veratrum album, an unpalatable, long-lived, clonal plant species. Journal of Ecology, 2002, 90, 360-370.	4.0	73
50	Combined effects of agrochemicals and ecosystem services on crop yield across Europe. Ecology Letters, 2017, 20, 1427-1436.	6.4	70
51	Insect pollination is at least as important for marketable crop yield as plant quality in a seed crop. Ecology Letters, 2018, 21, 1704-1713.	6.4	69
52	Effects of ecological compensation meadows on arthropod diversity in adjacent intensively managed grassland. Biological Conservation, 2010, 143, 642-649.	4.1	66
53	Complementarity and synergisms among ecosystem services supporting crop yield. Global Food Security, 2018, 17, 38-47.	8.1	66
54	Waterbirds increase more rapidly in Ramsarâ€designated wetlands than in unprotected wetlands. Journal of Applied Ecology, 2014, 51, 289-298.	4.0	65

DAVID KLEIJN

#	Article	IF	CITATIONS
55	Reprint of "Conservation biological control and enemy diversity on a landscape scale―[Biol. Control 43 (2007) 294–309]. Biological Control, 2008, 45, 238-253.	3.0	64
56	Developing European conservation and mitigation tools for pollination services: approaches of the STEP (Status and Trends of European Pollinators) project. Journal of Apicultural Research, 2011, 50, 152-164.	1.5	64
57	Pollination contribution to crop yield is often context-dependent: A review of experimental evidence. Agriculture, Ecosystems and Environment, 2019, 280, 16-23.	5.3	62
58	Dynamics and ecological consequences of avian influenza virus infection in greater white-fronted geese in their winter staging areas. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 2041-2048.	2.6	56
59	The exploitation of heterogeneity by a clonal plant in habitats with contrasting productivity levels. Journal of Ecology, 1999, 87, 873-884.	4.0	54
60	The conservation effects of meadow bird agreements on farmland in Zeeland, The Netherlands, in the period 1989–1995. Biological Conservation, 2004, 117, 443-451.	4.1	54
61	Integrating agroecological production in a robust post-2020 Global Biodiversity Framework. Nature Ecology and Evolution, 2020, 4, 1150-1152.	7.8	54
62	Can Establishment Characteristics Explain the Poor Colonization Success of Late Successional Grassland Species on Ex-Arable Land?. Restoration Ecology, 2003, 11, 131-138.	2.9	49
63	Effects of Set-Aside Land on Farmland Biodiversity: Comments on Van Buskirk and Willi. Conservation Biology, 2005, 19, 963-966.	4.7	49
64	Effectiveness of agriâ€environmental management on pollinators is moderated more by ecological contrast than by landscape structure or landâ€use intensity. Ecology Letters, 2019, 22, 1493-1500.	6.4	47
65	Effects of pollen species composition on the foraging behaviour and offspring performance of the mason bee Osmia bicornis (L.). Basic and Applied Ecology, 2017, 18, 21-30.	2.7	44
66	The importance of nitrogen and carbohydrate storage for plant growth of the alpine herb Veratrum album. New Phytologist, 2005, 166, 565-575.	7.3	43
67	Size and Sex-Dependent Shrinkage of Dutch Bees during One-and-a-Half Centuries of Land-Use Change. PLoS ONE, 2016, 11, e0148983.	2.5	43
68	Wild insect diversity increases inter-annual stability in global crop pollinator communities. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20210212.	2.6	43
69	Managing trapâ€nesting bees as crop pollinators: Spatiotemporal effects of floral resources and antagonists. Journal of Applied Ecology, 2018, 55, 195-204.	4.0	41
70	Exploring the relationships between landscape complexity, wild bee species richness and reproduction, and pollination services along a complexity gradient in the Netherlands. Biological Conservation, 2017, 214, 312-319.	4.1	39
71	How to efficiently obtain accurate estimates of flower visitation rates by pollinators. Basic and Applied Ecology, 2017, 19, 11-18.	2.7	38
72	Indirect effects of grassland extensification schemes on pollinators in two contrasting European countries. Biological Conservation, 2007, 135, 302-307.	4.1	37

DAVID KLEIJN

#	Article	IF	CITATIONS
73	Impact of pollen resources drift on common bumblebees in <scp>NW</scp> Europe. Global Change Biology, 2017, 23, 68-76.	9.5	36
74	Scaling up effects of measures mitigating pollinator loss from local―to landscapeâ€level population responses. Methods in Ecology and Evolution, 2018, 9, 1727-1738.	5.2	35
75	High land-use intensity in grasslands constrains wild bee species richness in Europe. Biological Conservation, 2020, 241, 108255.	4.1	35
76	rasterdiv—An Information Theory tailored R package for measuring ecosystem heterogeneity from space: To the origin and back. Methods in Ecology and Evolution, 2021, 12, 1093-1102.	5.2	33
77	Linking farmer and beekeeper preferences with ecological knowledge to improve crop pollination. People and Nature, 2019, 1, 562-572.	3.7	32
78	Can aboveâ€ground ecosystem services compensate for reduced fertilizer input and soil organic matter in annual crops?. Journal of Applied Ecology, 2016, 53, 1186-1194.	4.0	30
79	Establishment of wildflower fields in poor quality landscapes enhances micro-parasite prevalence in wild bumble bees. Oecologia, 2019, 189, 149-158.	2.0	27
80	Global patterns in bumble bee pollen collection show phylogenetic conservation of diet. Journal of Animal Ecology, 2021, 90, 2421-2430.	2.8	24
81	Using ecological and field survey data to establish a national list of the wild bee pollinators of crops. Agriculture, Ecosystems and Environment, 2021, 315, 107447.	5.3	24
82	Extremely wet summer events enhance permafrost thaw for multiple years in Siberian tundra. Nature Communications, 2022, 13, 1556.	12.8	24
83	Effects of landscape complexity on pollinators are moderated by pollinators' association with mass-flowering crops. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20190387.	2.6	23
84	Seasonal distribution of meadow birds in relation to in-field heterogeneity and management. Agriculture, Ecosystems and Environment, 2011, 142, 161-166.	5.3	22
85	Effective Long-Distance Pollen Dispersal in Centaurea jacea. PLoS ONE, 2009, 4, e6751.	2.5	22
86	Landscape-scale forest cover increases the abundance of Drosophila suzukii and parasitoid wasps. Basic and Applied Ecology, 2018, 31, 33-43.	2.7	21
87	From zero to infinity: Minimum to maximum diversity of the planet by spatioâ€parametric Rao's quadratic entropy. Global Ecology and Biogeography, 2021, 30, 1153-1162.	5.8	21
88	Attractiveness of sown wildflower strips to flower-visiting insects depends on seed mixture and establishment success. Basic and Applied Ecology, 2021, 56, 401-415.	2.7	21
89	<i>Escherichia coli</i> Concentrations in Feces of Geese, Coots, and Gulls Residing on Recreational Water in The Netherlands. Vector-Borne and Zoonotic Diseases, 2011, 11, 601-603.	1.5	20
90	Applying the Aboveground-Belowground Interaction Concept in Agriculture: Spatio-Temporal Scales Matter. Frontiers in Ecology and Evolution, 2019, 7, .	2.2	20

#	Article	IF	CITATIONS
91	Insect pollination is the weakest link in the production of a hybrid seed crop. Agriculture, Ecosystems and Environment, 2020, 290, 106743.	5.3	20
92	Rapid Vegetation Succession and Coupled Permafrost Dynamics in Arctic Thaw Ponds in the Siberian Lowland Tundra. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2019JG005618.	3.0	20
93	Shrub decline and expansion of wetland vegetation revealed by very high resolution land cover change detection in the Siberian lowland tundra. Science of the Total Environment, 2021, 782, 146877.	8.0	19
94	<scp>CropPol</scp> : A dynamic, open and global database on crop pollination. Ecology, 2022, 103, e3614.	3.2	19
95	The Use of Nutrient resources form Arable Fields by Plants in Field Boundaries. Journal of Applied Ecology, 1996, 33, 1433.	4.0	18
96	Ecological contrasts drive responses of wintering farmland birds to conservation management. Ecography, 2015, 38, 813-821.	4.5	18
97	Insect pollination and soil organic matter improve raspberry production independently of the effects of fertilizers. Agriculture, Ecosystems and Environment, 2021, 309, 107270.	5.3	18
98	Flower availability drives effects of wildflower strips on ground-dwelling natural enemies and crop yield. Agriculture, Ecosystems and Environment, 2021, 319, 107570.	5.3	18
99	Patterns in species composition of arable field boundary vegetation. Acta Botanica Neerlandica, 1997, 46, 175-192.	0.9	16
100	The Relation Between Unpalatable Species, Nutrients and Plant Species Richness in Swiss Montane Pastures. Biodiversity and Conservation, 2006, 15, 3971-3982.	2.6	16
101	Bee conservation: Inclusive solutions. Science, 2018, 360, 389-390.	12.6	16
102	Integrating biodiversity conservation in wider landscape management: Necessity, implementation and evaluation. Advances in Ecological Research, 2020, , 127-159.	2.7	15
103	The relative importance of green infrastructure as refuge habitat for pollinators increases with local landâ€use intensity. Journal of Applied Ecology, 2020, 57, 1494-1503.	4.0	15
104	Additive and synergistic effects of arbuscular mycorrhizal fungi, insect pollination and nutrient availability in a perennial fruit crop. Agriculture, Ecosystems and Environment, 2022, 325, 107742.	5.3	14
105	Temporal and spatial heterogeneity of semiâ€natural habitat, but not crop diversity, is correlated with landscape pollinator richness. Journal of Applied Ecology, 2022, 59, 1258-1267.	4.0	13
106	Evaluating predictive performance of statistical models explaining wild bee abundance in a massâ€flowering crop. Ecography, 2021, 44, 525-536.	4.5	11
107	Testing projected wild bee distributions in agricultural habitats: predictive power depends on species traits and habitat type. Ecology and Evolution, 2015, 5, 4426-4436.	1.9	9
108	Demographic Changes Underpinning the Population Decline of StarlingsSturnus vulgarisin The Netherlands. Ardea, 2016, 104, 153-165.	0.6	9

DAVID KLEIJN

#	Article	IF	CITATIONS
109	No evidence that migratory geese disperse avian influenza viruses from breeding to wintering ground. PLoS ONE, 2017, 12, e0177790.	2.5	9
110	The power of argument. International Journal of Agricultural Sustainability, 2019, 17, 231-242.	3.5	9
111	Effects of ozone air pollution on crop pollinators and pollination. Global Environmental Change, 2022, 75, 102529.	7.8	9
112	Local and Landscape Scale Effects of Heterogeneity in Shaping Bird Communities and Population Dynamics. , 2019, , 231-243.		8
113	Functions of extensive animal dung "pavements―around the nests of the Black Lark (Melanocorypha) Tj ETC	2q1_1 0.78	34314 rgBT
114	Habitats supporting wader communities in Europe and relations between agricultural land use and breeding densities: A review. Global Ecology and Conservation, 2021, 28, e01657.	2.1	6
115	Soil pathogen-aphid interactions under differences in soil organic matter and mineral fertilizer. PLoS ONE, 2017, 12, e0179695.	2.5	5
116	Pollination increases white and narrow-leaved lupin protein yields but not all crop visitors contribute to pollination. Agriculture, Ecosystems and Environment, 2021, 313, 107386.	5.3	5
117	Rapid assessment of insect pollination services to inform decisionâ€making. Conservation Biology, 2022, 36, .	4.7	3
118	The Effectiveness of Agri-Environment Schemes as a Tool to Restore Biodiversity in Dutch Agricultural Landscapes. , 2004, , 183-192.		2
119	Potential tradeoffs between effects of arbuscular mycorrhizal fungi inoculation, soil organic matter content and fertilizer application in raspberry production. PLoS ONE, 2022, 17, e0269751.	2.5	2
120	Concentrating or scattering management in agricultural landscapes: Examining the effectiveness and efficiency of conservation measures. Agriculture, Ecosystems and Environment, 2016, 235, 51-60.	5.3	1
121	Field Boundary Habitats for Wildlife, Crop, and Environmental Protection. Advances in Agroecology, 2001, , .	0.3	0
122	Forty Years of Wildlife Conservation in a Nutshell. Trends in Ecology and Evolution, 2016, 31, 329-330.	8.7	0