Hagan Bayley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8377829/publications.pdf

Version: 2024-02-01

all docs

3449 5739 31,395 310 93 167 citations h-index g-index papers 344 344 344 19148 docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Functional Multivesicular Structures with Controlled Architecture from 3Dâ€Printed Droplet Networks. ChemSystemsChem, 2022, 4, e2100036.	1.1	10
2	Modular Synthetic Tissues from 3Dâ€Printed Building Blocks. Advanced Functional Materials, 2022, 32, 2107773.	7.8	15
3	Synthetic and Hybrid Tissues. , 2022, , 1-4.		0
4	Believe the Hype: Nanopore Proteomics Is Moving Forward. , 2022, 1, 28-29.		O
5	Reconstruction of the Gramâ€Negative Bacterial Outerâ€Membrane Bilayer. Small, 2022, 18, e2200007.	5.2	6
6	Parallel transmission in a synthetic nerve. Nature Chemistry, 2022, 14, 650-657.	6.6	20
7	Bioengineered Gastrointestinal Tissues with Fibroblastâ€Induced Shapes. Advanced Functional Materials, 2021, 31, 2007514.	7.8	5
8	Droplet printing reveals the importance of micron-scale structure for bacterial ecology. Nature Communications, 2021, 12, 857.	5.8	48
9	Bioengineered Gastrointestinal Tissue: Bioengineered Gastrointestinal Tissues with Fibroblastâ€Induced Shapes (Adv. Funct. Mater. 6/2021). Advanced Functional Materials, 2021, 31, 2170036.	7.8	O
10	Constructing ion channels from water-soluble α-helical barrels. Nature Chemistry, 2021, 13, 643-650.	6.6	59
11	Enzymeless DNA Base Identification by Chemical Stepping in a Nanopore. Journal of the American Chemical Society, 2021, 143, 18181-18187.	6.6	17
12	Determining the Orientation of Porins in Planar Lipid Bilayers. Methods in Molecular Biology, 2021, 2186, 51-62.	0.4	0
13	Nanopore Enzymology to Study Protein Kinases and Their Inhibition by Small Molecules. Methods in Molecular Biology, 2021, 2186, 95-114.	0.4	О
14	A Lipid-Based Droplet Processor for Parallel Chemical Signals. ACS Nano, 2021, 15, 20214-20224.	7.3	15
15	3D Bioprinting: Lipidâ€Bilayerâ€Supported 3D Printing of Human Cerebral Cortex Cells Reveals Developmental Interactions (Adv. Mater. 31/2020). Advanced Materials, 2020, 32, 2070235.	11.1	О
16	Titelbild: Singleâ€Molecule Observation of Intermediates in Bioorthogonal 2â€Cyanobenzothiazole Chemistry (Angew. Chem. 36/2020). Angewandte Chemie, 2020, 132, 15381-15381.	1.6	0
17	Singleâ€Molecule Observation of Intermediates in Bioorthogonal 2â€Cyanobenzothiazole Chemistry. Angewandte Chemie, 2020, 132, 15841-15846.	1.6	3
18	Controlled packing and single-droplet resolution of 3D-printed functional synthetic tissues. Nature Communications, 2020, 11, 2105.	5.8	64

#	Article	IF	CITATIONS
19	Direct detection of molecular intermediates from first-passage times. Science Advances, 2020, 6, eaaz 4642.	4.7	26
20	Bifurcated binding of the OmpF receptor underpins import of the bacteriocin colicin N into Escherichia coli. Journal of Biological Chemistry, 2020, 295, 9147-9156.	1.6	16
21	Lipidâ€Bilayerâ€Supported 3D Printing of Human Cerebral Cortex Cells Reveals Developmental Interactions. Advanced Materials, 2020, 32, e2002183.	11.1	40
22	Multi-responsive hydrogel structures from patterned droplet networks. Nature Chemistry, 2020, 12, 363-371.	6.6	148
23	Transmembrane Epitope Delivery by Passive Protein Threading through the Pores of the OmpF Porin Trimer. Journal of the American Chemical Society, 2020, 142, 12157-12166.	6.6	8
24	Singleâ€Molecule Observation of Intermediates in Bioorthogonal 2â€Cyanobenzothiazole Chemistry. Angewandte Chemie - International Edition, 2020, 59, 15711-15716.	7.2	17
25	Transmembrane protein rotaxanes reveal kinetic traps in the refolding of translocated substrates. Communications Biology, 2020, 3, 159.	2.0	12
26	Free-energy landscapes of membrane co-translocational protein unfolding. Communications Biology, 2020, 3, 160.	2.0	13
27	Droplet Networks, from Lipid Bilayers to Synthetic Tissues. , 2019, , 1-13.		2
28	Redirecting Pore Assembly of Staphylococcal α-Hemolysin by Protein Engineering. ACS Central Science, 2019, 5, 629-639.	5.3	14
29	Single-Molecule Kinetics of Growth and Degradation of Cell-Penetrating Poly(disulfide)s. Journal of the American Chemical Society, 2019, 141, 12444-12447.	6.6	41
30	Controlled deprotection and release of a small molecule from a compartmented synthetic tissue module. Communications Chemistry, $2019, 2, \ldots$	2.0	23
31	Catalytic site-selective substrate processing within a tubular nanoreactor. Nature Nanotechnology, 2019, 14, 1135-1142.	15.6	30
32	Single-Molecule Protein Phosphorylation and Dephosphorylation by Nanopore Enzymology. ACS Nano, 2019, 13, 633-641.	7.3	44
33	Synthetic tissues. Emerging Topics in Life Sciences, 2019, 3, 615-622.	1.1	28
34	Building blocks for cells and tissues: Beyond a game. Emerging Topics in Life Sciences, 2019, 3, 433-434.	1.1	4
35	Singleâ€Molecule Determination of the Isomers of <scp>d</scp> â€Glucose and <scp>d</scp> â€Fructose that Bind to Boronic Acids. Angewandte Chemie, 2018, 130, 2891-2895.	1.6	12
36	Singleâ€Molecule Determination of the Isomers of <scp>d</scp> â€Glucose and <scp>d</scp> â€Fructose that Bind to Boronic Acids. Angewandte Chemie - International Edition, 2018, 57, 2841-2845.	7.2	70

#	Article	IF	Citations
37	Bioorthogonal Cycloadditions with Subâ€Millisecond Intermediates. Angewandte Chemie, 2018, 130, 1232-1235.	1.6	8
38	Bioorthogonal Cycloadditions with Subâ€Millisecond Intermediates. Angewandte Chemie - International Edition, 2018, 57, 1218-1221.	7.2	26
39	Single-Molecule Observation of the Intermediates in a Catalytic Cycle. Journal of the American Chemical Society, 2018, 140, 17538-17546.	6.6	26
40	Directional control of a processive molecular hopper. Science, 2018, 361, 908-912.	6.0	69
41	DNA scaffolds support stable and uniform peptide nanopores. Nature Nanotechnology, 2018, 13, 739-745.	15.6	65
42	Directional Porin Binding of Intrinsically Disordered Protein Sequences Promotes Colicin Epitope Display in the Bacterial Periplasm. Biochemistry, 2018, 57, 4374-4381.	1.2	12
43	Lipid binding attenuates channel closure of the outer membrane protein OmpF. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 6691-6696.	3.3	39
44	Orientation of the OmpF Porin in Planar Lipid Bilayers. ChemBioChem, 2017, 18, 554-562.	1.3	20
45	Light-Patterned Current Generation in a Droplet Bilayer Array. Scientific Reports, 2017, 7, 46585.	1.6	23
46	Multi-compartment encapsulation of communicating droplets and droplet networks in hydrogel as a model for artificial cells. Scientific Reports, 2017, 7, 45167.	1.6	66
47	Getting to the bottom of the well. Nature Nanotechnology, 2017, 12, 1116-1117.	15.6	8
48	Light-patterning of synthetic tissues with single droplet resolution. Scientific Reports, 2017, 7, 9315.	1.6	58
49	Functional aqueous droplet networks. Molecular BioSystems, 2017, 13, 1658-1691.	2.9	56
50	Gel Microrods for 3D Tissue Printing. Advanced Biology, 2017, 1, e1700075.	3.0	31
51	High-Resolution Patterned Cellular Constructs by Droplet-Based 3D Printing. Scientific Reports, 2017, 7, 7004.	1.6	154
52	Membrane pores: from structure and assembly, to medicine and technology. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160208.	1.8	12
53	A monodisperse transmembrane α-helical peptide barrel. Nature Chemistry, 2017, 9, 411-419.	6.6	97
54	Strategies in the Design and Use of Synthetic "Internal Glycan―Vaccines. Methods in Enzymology, 2017, 597, 335-357.	0.4	0

#	Article	IF	Citations
55	A new class of hybrid secretion system is employed in Pseudomonas amyloid biogenesis. Nature Communications, 2017, 8, 263.	5.8	56
56	Light-activated communication in synthetic tissues. Science Advances, 2016, 2, e1600056.	4.7	173
57	Chemical polyglycosylation and nanolitre detection enables single-molecule recapitulation of bacterial sugar export. Nature Chemistry, 2016, 8, 461-469.	6.6	26
58	Engineered transmembrane pores. Current Opinion in Chemical Biology, 2016, 34, 117-126.	2.8	95
59	Semisynthetic Nanoreactor for Reversible Single-Molecule Covalent Chemistry. ACS Nano, 2016, 10, 8843-8850.	7. 3	20
60	New technologies for DNA analysis – a review of the READNA Project. New Biotechnology, 2016, 33, 311-330.	2.4	10
61	3D-printed synthetic tissues. Biochemist, 2016, 38, 16-19.	0.2	4
62	Innentitelbild: Pim Kinase Inhibitors Evaluated with a Single-Molecule Engineered Nanopore Sensor (Angew. Chem. 28/2015). Angewandte Chemie, 2015, 127, 8114-8114.	1.6	0
63	Polymers through Protein Pores: Single-Molecule Experiments with Nucleic Acids, Polypeptides and Polysaccharides. Biophysical Journal, 2015, 108, 489a.	0.2	0
64	Pim Kinase Inhibitors Evaluated with a Singleâ€Molecule Engineered Nanopore Sensor. Angewandte Chemie - International Edition, 2015, 54, 8154-8159.	7.2	26
65	Pim Kinase Inhibitors Evaluated with a Singleâ€Molecule Engineered Nanopore Sensor. Angewandte Chemie, 2015, 127, 8272-8277.	1.6	7
66	The role of lipids in mechanosensation. Nature Structural and Molecular Biology, 2015, 22, 991-998.	3.6	160
67	Nucleobase Recognition by Truncated α-Hemolysin Pores. ACS Nano, 2015, 9, 7895-7903.	7.3	40
68	DNA stretching and optimization of nucleobase recognition in enzymatic nanopore sequencing. Nanotechnology, 2015, 26, 084002.	1.3	22
69	Semisynthetic protein nanoreactor for single-molecule chemistry. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13768-13773.	3.3	55
70	High-throughput optical sensing of nucleic acids in a nanopore array. Nature Nanotechnology, 2015, 10, 986-991.	15.6	132
71	Electro-Wetting of a Hydrophobic Gate in a Biomimetic Nanopore. Biophysical Journal, 2015, 108, 186a.	0.2	0
72	Nanopore Sequencing: From Imagination to Reality. Clinical Chemistry, 2015, 61, 25-31.	1.5	200

#	Article	IF	Citations
73	Continuous observation of the stochastic motion of an individual small-molecule walker. Nature Nanotechnology, 2015, 10, 76-83.	15.6	50
74	A droplet microfluidic system for sequential generation of lipid bilayers and transmembrane electrical recordings. Lab on A Chip, 2015, 15, 541-548.	3.1	43
75	Protein co-translocational unfolding depends on the direction of pulling. Nature Communications, 2014, 5, 4841.	5.8	62
76	Functional truncated membrane pores. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 2425-2430.	3.3	65
77	Single-molecule site-specific detection of protein phosphorylation with a nanopore. Nature Biotechnology, 2014, 32, 179-181.	9.4	229
78	Detection of 3′-End RNA Uridylation with a Protein Nanopore. ACS Nano, 2014, 8, 1364-1374.	7.3	32
79	Electrostatically Enhanced Association of a Pim Kinase Substrate Revealed by Stochastic Detection. Biophysical Journal, 2014, 106, 18a.	0.2	0
80	Designing a Hydrophobic Barrier within Biomimetic Nanopores. ACS Nano, 2014, 8, 11268-11279.	7.3	43
81	Single-molecule analysis of chirality in a multicomponent reaction network. Nature Chemistry, 2014, 6, 603-607.	6.6	52
82	Construction and Manipulation of Functional Three-Dimensional Droplet Networks. ACS Nano, 2014, 8, 771-779.	7.3	52
83	Designing Hydrophobic Gates into Biomimetic Nanopores. Biophysical Journal, 2014, 106, 211a.	0.2	0
84	Porphyrins for Probing Electrical Potential Across Lipid Bilayer Membranes by Second Harmonic Generation. Angewandte Chemie - International Edition, 2013, 52, 9044-9048.	7.2	35
85	Single-molecule interrogation of a bacterial sugar transporter allows the discovery of an extracellular inhibitor. Nature Chemistry, 2013, 5, 651-659.	6.6	42
86	An engineered dimeric protein pore that spans adjacent lipid bilayers. Nature Communications, 2013, 4, 1725.	5.8	44
87	Stochastic detection of Pim protein kinases reveals electrostatically enhanced association of a peptide substrate. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E4417-26.	3.3	49
88	Nanopore-Based Identification of Individual Nucleotides for Direct RNA Sequencing. Nano Letters, 2013, 13, 6144-6150.	4.5	103
89	Engineering a Biomimetic Biological Nanopore to Selectively Capture Folded Target Proteins. Biophysical Journal, 2013, 104, 518a.	0.2	0
90	Simulations and Modelling of Biomimetic Nanopores. Biophysical Journal, 2013, 104, 527a.	0.2	0

#	Article	IF	Citations
91	Rates and Stoichiometries of Metal Ion Probes of Cysteine Residues within Ion Channels. Biophysical Journal, 2013, 105, 356-364.	0.2	21
92	Multistep protein unfolding during nanopore translocation. Nature Nanotechnology, 2013, 8, 288-295.	15.6	275
93	Singleâ€Molecule Detection of 5â€Hydroxymethylcytosine in DNA through Chemical Modification and Nanopore Analysis. Angewandte Chemie - International Edition, 2013, 52, 4350-4355.	7.2	60
94	A Tissue-Like Printed Material. Science, 2013, 340, 48-52.	6.0	516
95	Translocating Kilobase RNA through the Staphylococcal \hat{l}_{\pm} -Hemolysin Nanopore. Nano Letters, 2013, 13, 2500-2505.	4.5	49
96	Intrinsically Disordered Protein Threads Through the Bacterial Outer-Membrane Porin OmpF. Science, 2013, 340, 1570-1574.	6.0	109
97	Functional Droplet Interface Bilayers. , 2013, , 861-868.		1
98	Tetrameric assembly of KvLm <i>K</i> ⁺ channels with defined numbers of voltage sensors. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 16917-16922.	3.3	14
99	Individual RNA Base Recognition in Immobilized Oligonucleotides Using a Protein Nanopore. Nano Letters, 2012, 12, 5637-5643.	4.5	65
100	Probing the Orientational Distribution of Dyes in Membranes through Multiphoton Microscopy. Biophysical Journal, 2012, 103, 907-917.	0.2	30
101	Single Molecule RNA Base Identification with a Biological Nanopore. Biophysical Journal, 2012, 102, 429a.	0.2	5
102	Are we there yet?. Physics of Life Reviews, 2012, 9, 161-163.	1.5	9
103	Voltage-Dependent Gating of the K+ Channel KvLm Explored through Heterotetramers. Biophysical Journal, 2012, 102, 531a.	0.2	0
104	Real-Time Stochastic Detection of Multiple Neurotransmitters with a Protein Nanopore. ACS Nano, 2012, 6, 5304-5308.	7.3	64
105	Nucleobase recognition at alkaline pH and apparent pK _a of single DNA bases immobilised within a biological nanopore. Chemical Communications, 2012, 48, 1520-1522.	2.2	24
106	Lipid-coated hydrogel shapes as components of electrical circuits and mechanical devices. Scientific Reports, 2012, 2, 848.	1.6	37
107	Protein Detection by Nanopores Equipped with Aptamers. Journal of the American Chemical Society, 2012, 134, 2781-2787.	6.6	284
108	Continuous Stochastic Detection of Amino Acid Enantiomers with a Protein Nanopore. Angewandte Chemie - International Edition, 2012, 51, 9606-9609.	7.2	82

#	Article	IF	Citations
109	Rapid Assembly of a Multimeric Membrane Protein Pore Observed by Single Molecule Fluorescence. Biophysical Journal, 2012, 102, 262a.	0.2	0
110	An Engineered ClyA Nanopore Detects Folded Target Proteins by Selective External Association and Pore Entry. Nano Letters, 2012, 12, 4895-4900.	4.5	183
111	<i>S</i> à€Nitrosothiol Chemistry at the Singleâ€Molecule Level. Angewandte Chemie - International Edition, 2012, 51, 7972-7976.	7.2	18
112	Permeation of Styryl Dyes through Nanometer-Scale Pores in Membranes. Biochemistry, 2011, 50, 7493-7502.	1.2	19
113	Controlled Translocation of Individual DNA Molecules through Protein Nanopores with Engineered Molecular Brakes. Nano Letters, 2011, 11, 746-750.	4.5	116
114	Three-Dimensional Construction of Bilayer Networks using Shape Encoded Hydrogel. Biophysical Journal, 2011, 100, 502a.	0.2	0
115	Hybrid Biological/Solid-State Nanopores. Biophysical Journal, 2011, 100, 168a.	0.2	1
116	Rapid Assembly of a Multimeric Membrane Protein Pore. Biophysical Journal, 2011, 101, 2679-2683.	0.2	75
117	Formation of droplet networks that function in aqueous environments. Nature Nanotechnology, 2011, 6, 803-808.	15.6	185
118	Molecular Dynamics Simulations of DNA within a Nanopore: Arginineâ^'Phosphate Tethering and a Binding/Sliding Mechanism for Translocation. Biochemistry, 2011, 50, 3777-3783.	1.2	26
119	Fluorinated Amphiphiles Control the Insertion of \hat{l} ±-Hemolysin Pores into Lipid Bilayers. Biochemistry, 2011, 50, 1599-1606.	1.2	21
120	Tuning the Cavity of Cyclodextrins: Altered Sugar Adaptors in Protein Pores. Journal of the American Chemical Society, 2011, 133, 1987-2001.	6.6	42
121	Altered Antibiotic Transport in OmpC Mutants Isolated from a Series of Clinical Strains of Multi-Drug Resistant E. coli. PLoS ONE, 2011, 6, e25825.	1.1	98
122	Subunit Dimers of \hat{l}_{\pm} -Hemolysin Expand the Engineering Toolbox for Protein Nanopores. Journal of Biological Chemistry, 2011, 286, 14324-14334.	1.6	18
123	ã,°ãf©ãf•ã,§ãf³ã®ç°åª"ã,'å^©ç"¨ã⊷ãŸDNAã,·ãf¼ã,±ãf³ã,µãf¼. Nature Digest, 2010, 7, 32-34.	0.0	0
124	Multiple Baseâ€Recognition Sites in a Biological Nanopore: Two Heads are Better than One. Angewandte Chemie - International Edition, 2010, 49, 556-559.	7.2	100
125	Singleâ€Molecule Kinetics of Twoâ€Step Divalent Cation Chelation. Angewandte Chemie - International Edition, 2010, 49, 5085-5090.	7.2	41
126	Holes with an edge. Nature, 2010, 467, 164-165.	13.7	58

#	Article	IF	CITATIONS
127	A primary hydrogen–deuterium isotope effect observed at the single-molecule level. Nature Chemistry, 2010, 2, 921-928.	6.6	70
128	Hybrid pore formation by directed insertion of \hat{l}_{\pm} -haemolysin into solid-state nanopores. Nature Nanotechnology, 2010, 5, 874-877.	15.6	261
129	Inactivation of the KcsA potassium channel explored with heterotetramers. Journal of General Physiology, 2010, 135, 29-42.	0.9	22
130	Structural Analysis of Heptameric Alpha-Hemolysin under Extreme Conditions that Facilitate Nucleic Acid Translocation. Biophysical Journal, 2010, 98, 647a.	0.2	0
131	Analysis of Single Nucleic Acid Molecules with Protein Nanopores. Methods in Enzymology, 2010, 475, 591-623.	0.4	103
132	The KvLm Potassium Channel in Asymmetric Bilayer. Biophysical Journal, 2010, 98, 1a.	0.2	0
133	Urea Facilitates the Translocation of Single-Stranded DNA and RNA Through the α-Hemolysin Nanopore. Biophysical Journal, 2010, 98, 44a.	0.2	0
134	Urea Facilitates the Translocation of Single-Stranded DNA and RNA Through the \hat{l}_{\pm} -Hemolysin Nanopore. Biophysical Journal, 2010, 98, 1856-1863.	0.2	43
135	Molecular bases of cyclodextrin adapter interactions with engineered protein nanopores. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 8165-8170.	3.3	108
136	Nucleobase Recognition in ssDNA at the Central Constriction of the \hat{l}_{\pm} -Hemolysin Pore. Nano Letters, 2010, 10, 3633-3637.	4.5	91
137	Identification of epigenetic DNA modifications with a protein nanopore. Chemical Communications, 2010, 46, 8195.	2.2	161
138	Single-nucleotide discrimination in immobilized DNA oligonucleotides with a biological nanopore. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 7702-7707.	3.3	411
139	Elimination of a bacterial poreâ€forming toxin by sequential endocytosis and exocytosis. FEBS Letters, 2009, 583, 337-344.	1.3	141
140	Piercing insights. Nature, 2009, 459, 651-652.	13.7	60
141	Continuous base identification for single-molecule nanopore DNA sequencing. Nature Nanotechnology, 2009, 4, 265-270.	15.6	1,507
142	Droplet networks with incorporated protein diodes show collective properties. Nature Nanotechnology, 2009, 4, 437-440.	15.6	210
143	Properties of Bacillus cereus hemolysin II: A heptameric transmembrane pore. Protein Science, 2009, 11, 1813-1824.	3.1	62
144	Simultaneous Measurement of Ionic Current and Fluorescence from Single Protein Pores. Journal of the American Chemical Society, 2009, 131, 1652-1653.	6.6	118

#	Article	IF	Citations
145	DNA Strands from Denatured Duplexes are Translocated through Engineered Protein Nanopores at Alkaline pH. Nano Letters, 2009, 9, 3831-3836.	4.5	43
146	Wrestling with Native Chemical Ligation. ACS Chemical Biology, 2009, 4, 983-985.	1.6	9
147	Simultaneous Measurement Of Ionic Current And Fluorescence From Single Protein Pores. Biophysical Journal, 2009, 96, 28a.	0.2	0
148	Electrical Communication In Droplet Interface Bilayers Networks. Biophysical Journal, 2009, 96, 544a.	0.2	2
149	Building And Controlling Networks Of Droplet Interface Bilayers. Biophysical Journal, 2009, 96, 214a.	0.2	0
150	The potential and challenges of nanopore sequencing. , 2009, , 261-268.		23
151	Peptide Backbone Mutagenesis of Putative Gating Hinges in a Potassium Ion Channel. ChemBioChem, 2008, 9, 1725-1728.	1.3	5
152	Orientation of the Monomeric Porin OmpG in Planar Lipid Bilayers. ChemBioChem, 2008, 9, 3029-3036.	1.3	24
153	The potential and challenges of nanopore sequencing. Nature Biotechnology, 2008, 26, 1146-1153.	9.4	2,201
154	Single-Molecule Detection of Nitrogen Mustards by Covalent Reaction within a Protein Nanopore. Journal of the American Chemical Society, 2008, 130, 6813-6819.	6.6	103
155	Droplet interface bilayers. Molecular BioSystems, 2008, 4, 1191.	2.9	411
156	Asymmetric Droplet Interface Bilayers. Journal of the American Chemical Society, 2008, 130, 5878-5879.	6.6	195
157	Screening Blockers Against a Potassium Channel with a Droplet Interface Bilayer Array. Journal of the American Chemical Society, 2008, 130, 15543-15548.	6.6	139
158	Enhanced translocation of single DNA molecules through α-hemolysin nanopores by manipulation of internal charge. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 19720-19725.	3.3	241
159	Outer membrane protein G: Engineering a quiet pore for biosensing. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 6272-6277.	3.3	160
160	Single-Molecule Covalent Chemistry in a Protein Nanoreactor. Springer Series in Biophysics, 2008, , 251-277.	0.4	48
161	Functional Bionetworks from Nanoliter Water Droplets. Journal of the American Chemical Society, 2007, 129, 8650-8655.	6.6	346
162	Protein Nanopores with Covalently Attached Molecular Adapters. Journal of the American Chemical Society, 2007, 129, 16142-16148.	6.6	112

#	Article	IF	CITATIONS
163	Catalyzing the Translocation of Polypeptides through Attractive Interactions. Journal of the American Chemical Society, 2007, 129, 14034-14041.	6.6	129
164	A Storable Encapsulated Bilayer Chip Containing a Single Protein Nanopore. Journal of the American Chemical Society, 2007, 129, 4701-4705.	6.6	132
165	Electrical Behavior of Droplet Interface Bilayer Networks:  Experimental Analysis and Modeling. Journal of the American Chemical Society, 2007, 129, 11854-11864.	6.6	98
166	Membrane Protein Stoichiometry Determined from the Step-Wise Photobleaching of Dye-Labelled Subunits. ChemBioChem, 2007, 8, 994-999.	1.3	111
167	Formation of a Chiral Center and Pyrimidal Inversion at the Singleâ€Molecule Level. Angewandte Chemie - International Edition, 2007, 46, 7412-7416.	7.2	27
168	Stochastic Detection of Motor Protein–RNA Complexes by Singleâ€Channel Current Recording. ChemPhysChem, 2007, 8, 2189-2194.	1.0	34
169	Stochastic Detection of Enantiomers. Journal of the American Chemical Society, 2006, 128, 10684-10685.	6.6	143
170	Toward Single Molecule DNA Sequencing: Direct Identification of Ribonucleoside and Deoxyribonucleoside 5â€~-Monophosphates by Using an Engineered Protein Nanopore Equipped with a Molecular Adapter. Journal of the American Chemical Society, 2006, 128, 1705-1710.	6.6	298
171	Ion channels get flashy. Nature Chemical Biology, 2006, 2, 11-13.	3.9	12
172	Direct transfer of membrane proteins from bacteria to planar bilayers for rapid screening by single-channel recording. Nature Chemical Biology, 2006, 2, 314-318.	3.9	51
173	Sequencing single molecules of DNA. Current Opinion in Chemical Biology, 2006, 10, 628-637.	2.8	155
174	A Genetically Encoded Pore for the Stochastic Detection of a Protein Kinase. ChemBioChem, 2006, 7, 1923-1927.	1.3	52
175	Temperature-Responsive Protein Pores. Journal of the American Chemical Society, 2006, 128, 15332-15340.	6.6	118
176	Photoisomerization of an Individual Azobenzene Molecule in Water: An Onâ^'Off Switch Triggered by Light at a Fixed Wavelength. Journal of the American Chemical Society, 2006, 128, 12404-12405.	6.6	120
177	Role of the Amino Latch of Staphylococcal α-Hemolysin in Pore Formation. Journal of Biological Chemistry, 2006, 281, 2195-2204.	1.6	46
178	Assembly of the Bi-component Leukocidin Pore Examined by Truncation Mutagenesis. Journal of Biological Chemistry, 2006, 281, 2205-2214.	1.6	14
179	Role of the amino latch of staphylococcal alphaâ€hemolysin and leukocidin in pore formation. FASEB Journal, 2006, 20, .	0.2	0
180	Protein components for nanodevices. Current Opinion in Chemical Biology, 2005, 9, 576-584.	2.8	99

#	Article	IF	CITATIONS
181	Single-Molecule Observation of the Catalytic Subunit of cAMP-Dependent Protein Kinase Binding to an Inhibitor Peptide. Chemistry and Biology, 2005, 12, 109-120.	6.2	76
182	The leukocidin pore: Evidence for an octamer with four LukF subunits and four LukS subunits alternating around a central axis. Protein Science, 2005, 14, 2550-2561.	3.1	74
183	Prepore for a breakthrough. Nature Structural and Molecular Biology, 2005, 12, 385-386.	3.6	27
184	Carriers versus Adapters in Stochastic Sensing. ChemPhysChem, 2005, 6, 889-892.	1.0	41
185	Single Protein Pores Containing Molecular Adapters at High Temperatures. Angewandte Chemie - International Edition, 2005, 44, 1495-1499.	7.2	93
186	Recognizing a Single Base in an Individual DNA Strand: A Step Toward DNA Sequencing in Nanopores. Angewandte Chemie - International Edition, 2005, 44, 1401-1404.	7.2	181
187	Recognizing a Single Base in an Individual DNA Strand: A Step Toward DNA Sequencing in Nanopores. Angewandte Chemie, 2005, 117, 1425-1428.	1.6	37
188	Stochastic Sensing of TNT with a Genetically Engineered Pore. ChemBioChem, 2005, 6, 1875-1881.	1.3	121
189	Photoregulation of Proteins. , 2005, , 253-340.		17
190	Direct Introduction of Single Protein Channels and Pores into Lipid Bilayers. Journal of the American Chemical Society, 2005, 127, 6502-6503.	6.6	56
191	The Internal Cavity of the Staphylococcal α-Hemolysin Pore Accommodates â^1/4175 Exogenous Amino Acid Residues. Biochemistry, 2005, 44, 8919-8929.	1.2	18
192	Stepwise Growth of a Single Polymer Chain. Journal of the American Chemical Society, 2005, 127, 10462-10463.	6.6	53
193	Interactions of Peptides with a Protein Pore. Biophysical Journal, 2005, 89, 1030-1045.	0.2	248
194	Engineered Nanopores., 2005,, 93-112.		8
195	Stochastic Detection of Monovalent and Bivalent Protein–Ligand Interactions. Angewandte Chemie - International Edition, 2004, 43, 842-846.	7.2	105
196	Single DNA Rotaxanes of a Transmembrane Pore Protein. Angewandte Chemie - International Edition, 2004, 43, 3063-3067.	7.2	78
197	Cover Picture: Single DNA Rotaxanes of a Transmembrane Pore Protein (Angew. Chem. Int. Ed. 23/2004). Angewandte Chemie - International Edition, 2004, 43, 2977-2977.	7.2	0
198	Functional engineered channels and pores (Review). Molecular Membrane Biology, 2004, 21, 209-220.	2.0	182

#	Article	IF	CITATIONS
199	Kinetics of a Three-Step Reaction Observed at the Single-Molecule Level. Angewandte Chemie, 2003, 115, 1970-1973.	1.6	12
200	Kinetics of a Three-Step Reaction Observed at the Single-Molecule Level. Angewandte Chemie - International Edition, 2003, 42, 1926-1929.	7.2	56
201	Single-Molecule Covalent Chemistry with Spatially Separated Reactants. Angewandte Chemie - International Edition, 2003, 42, 3766-3771.	7.2	99
202	Measurement of trehalose loading of mammalian cells porated with a metal-actuated switchable pore. Biotechnology and Bioengineering, 2003, 82, 525-532.	1.7	58
203	Folding of a Monomeric Porin, OmpG, in Detergent Solutionâ€. Biochemistry, 2003, 42, 9453-9465.	1.2	76
204	Partitioning of Individual Flexible Polymers into a Nanoscopic Protein Pore. Biophysical Journal, 2003, 85, 897-910.	0.2	112
205	Electroosmotic enhancement of the binding of a neutral molecule to a transmembrane pore. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 15498-15503.	3.3	123
206	High-Throughput Scanning Mutagenesis by Recombination Polymerase Chain Reaction., 2002, 182, 139-147.		5
207	Catalytic Subunit of Protein Kinase A Caged at the Activating Phosphothreonine. Journal of the American Chemical Society, 2002, 124, 8220-8229.	6.6	69
208	Probing Distance and Electrical Potential within a Protein Pore with Tethered DNA. Biophysical Journal, 2002, 83, 3202-3210.	0.2	84
209	Kinetics of a Reversible Covalent-Bond-Forming Reaction Observed at the Single-Molecule Level. Angewandte Chemie, 2002, 114, 3859-3861.	1.6	23
210	Kinetics of a Reversible Covalent-Bond-Forming Reaction Observed at the Single-Molecule Level. Angewandte Chemie - International Edition, 2002, 41, 3707-3709.	7.2	109
211	Stochastic Sensing of Nanomolar Inositol 1,4,5-Trisphosphate with an Engineered Pore. Chemistry and Biology, 2002, 9, 829-838.	6.2	138
212	Ion Channels and Lipid Bilayer Membranes Under High Potentials Using Microfabricated Apertures. Biomedical Microdevices, 2002, 4, 231-236.	1.4	71
213	Subunit composition of a bicomponent toxin: Staphylococcal leukocidin forms an octameric transmembrane pore. Protein Science, 2002, 11, 894-902.	3.1	122
214	Capture of a Single Molecule in a Nanocavity. Science, 2001, 291, 636-640.	6.0	141
215	Beneficial Effect of Intracellular Trehalose on the Membrane Integrity of Dried Mammalian Cells. Cryobiology, 2001, 43, 168-181.	0.3	166
216	The Staphylococcal Leukocidin Bicomponent Toxin Forms Large Ionic Channels,. Biochemistry, 2001, 40, 8514-8522.	1.2	60

#	Article	IF	Citations
217	S-layer Ultrafiltration Membranes:Â A New Support for Stabilizing Functionalized Lipid Membranes. Langmuir, 2001, 17, 499-503.	1.6	72
218	Caged Thiophosphotyrosine Peptides. Angewandte Chemie - International Edition, 2001, 40, 3049-3051.	7.2	42
219	Sequence-specific detection of individual DNA strands using engineered nanopores. Nature Biotechnology, 2001, 19, 636-639.	9.4	689
220	Stochastic sensors inspired by biology. Nature, 2001, 413, 226-230.	13.7	1,046
221	Kinetics of duplex formation for individual DNA strands within a single protein nanopore. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 12996-13001.	3.3	192
222	Prolonged Residence Time of a Noncovalent Molecular Adapter, \hat{l}^2 -Cyclodextrin, within the Lumen of Mutant \hat{l}_\pm -Hemolysin Pores. Journal of General Physiology, 2001, 118, 481-494.	0.9	101
223	Location of a Constriction in the Lumen of a Transmembrane Pore by Targeted Covalent Attachment of Polymer Molecules. Journal of General Physiology, 2001, 117, 239-252.	0.9	79
224	Intracellular trehalose improves the survival of cryopreserved mammalian cells. Nature Biotechnology, 2000, 18, 163-167.	9.4	475
225	Simultaneous stochastic sensing of divalent metal ions. Nature Biotechnology, 2000, 18, 1005-1007.	9.4	290
226	Detecting protein analytes that modulate transmembrane movement of a polymer chain within a single protein pore. Nature Biotechnology, 2000, 18, 1091-1095.	9.4	337
227	Reversal of charge selectivity in transmembrane protein pores by using noncovalent molecular adapters. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 3959-3964.	3.3	129
228	Surface-accessible Residues in the Monomeric and Assembled Forms of a Bacterial Surface Layer Protein. Journal of Biological Chemistry, 2000, 275, 37876-37886.	1.6	53
229	Interaction of the Noncovalent Molecular Adapter, \hat{l}^2 -Cyclodextrin, with the Staphylococcal \hat{l}_\pm -Hemolysin Pore. Biophysical Journal, 2000, 79, 1967-1975.	0.2	102
230	Biochemical and Biophysical Characterization of OmpG: A Monomeric Porinâ€. Biochemistry, 2000, 39, 11845-11854.	1.2	101
231	A Protein Pore with a Single Polymer Chain Tethered within the Lumen. Journal of the American Chemical Society, 2000, 122, 2411-2416.	6.6	100
232	Cyclic Peptides as Molecular Adapters for a Pore-Forming Protein. Journal of the American Chemical Society, 2000, 122, 11757-11766.	6.6	134
233	Resistive-Pulse SensingFrom Microbes to Molecules. Chemical Reviews, 2000, 100, 2575-2594.	23.0	491
234	Designed membrane channels and pores. Current Opinion in Biotechnology, 1999, 10, 94-103.	3.3	83

#	Article	IF	CITATIONS
235	Stochastic sensing of organic analytes by a pore-forming protein containing a molecular adapter. Nature, 1999, 398, 686-690.	13.7	679
236	Protein therapy—delivery guaranteed. Nature Biotechnology, 1999, 17, 1066-1067.	9.4	16
237	A functional protein pore with a "retro―transmembrane domain. Protein Science, 1999, 8, 1257-1267.	3.1	92
238	Heptameric structures of two ?-hemolysin mutants imaged with in situ atomic force microscopy. , 1999, 44, 353-356.		15
239	Genetically Engineered Metal Ion Binding Sites on the Outside of a Channel's Transmembrane \hat{l}^2 -Barrel. Biophysical Journal, 1999, 76, 837-845.	0.2	89
240	Ferrying proteins to the other side. Nature Biotechnology, 1998, 16, 418-420.	9.4	9
241	Purification and characterization of recombinant spider silk expressed in Escherichia coli. Applied Microbiology and Biotechnology, 1998, 49, 31-38.	1.7	167
242	Self-assembled \hat{l}_{\pm} -hemolysin pores in an S-layer-supported lipid bilayer. Biochimica Et Biophysica Acta - Biomembranes, 1998, 1370, 280-288.	1.4	72
243	Caged Catalytic Subunit of cAMP-Dependent Protein Kinase. Journal of the American Chemical Society, 1998, 120, 7661-7662.	6.6	57
244	[7] Caged peptides and proteins by targeted chemical modification. Methods in Enzymology, 1998, 291, 117-135.	0.4	24
245	Improved Protocol for High-Throughput Cysteine Scanning Mutagenesis. BioTechniques, 1998, 25, 764-772.	0.8	36
246	Transmembrane Â-barrel of staphylococcal Â-toxin forms in sensitive but not in resistant cells. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 11607-11611.	3.3	110
247	The Heptameric Prepore of a Staphylococcal α-Hemolysin Mutant in Lipid Bilayers Imaged by Atomic Force Microscopy. Biochemistry, 1997, 36, 9518-9522.	1.2	67
248	Caged cysteine and thiophosphoryl peptides. FEBS Letters, 1997, 405, 81-85.	1.3	54
249	Designed protein pores as components for biosensors. Chemistry and Biology, 1997, 4, 497-505.	6.2	280
250	VI. Applications of S-layers. FEMS Microbiology Reviews, 1997, 20, 151-175.	3.9	40
251	Building Doors into Cells. Scientific American, 1997, 277, 62-67.	1.0	41
252	Reversible permeabilization of plasma membranes with an engineered switchable pore. Nature Biotechnology, 1997, 15, 278-282.	9.4	92

#	Article	IF	Citations
253	Sequence of abductin, the molluscan â€rubber' protein. Current Biology, 1997, 7, R677-R678.	1.8	56
254	Toxin structure: Part of a hole?. Current Biology, 1997, 7, R763-R767.	1.8	46
255	Staphylococcal alpha-toxin, streptolysin-O, and Escherichia coli hemolysin: prototypes of pore-forming bacterial cytolysins. Archives of Microbiology, 1996, 165, 73-79.	1.0	287
256	Alternative splicing of the NMDAR1 subunit affects modulation by calcium. Molecular Brain Research, 1996, 39, 99-108.	2.5	10
257	Structure of Staphylococcal alpha -Hemolysin, a Heptameric Transmembrane Pore. Science, 1996, 274, 1859-1865.	6.0	2,237
258	Inhibitory Effects of Ketamine and Halothane on Recombinant Potassium Channels from Mammalian Brain. Anesthesiology, 1996, 84, 900-909	1.3	25
259	Pore-forming proteins with built-in triggers and switches. , 1996, , .		0
260	Tumor protease-activated, pore-forming toxins from a combinatorial library. Nature Biotechnology, 1996, 14, 852-856.	9.4	67
261	A photogenerated pore-forming protein. Chemistry and Biology, 1995, 2, 391-400.	6.2	97
262	An intermediate in the assembly of a pore-forming protein trapped with a genetically-engineered switch. Chemistry and Biology, 1995, 2, 99-105.	6.2	123
263	Interactions between Residues in Staphylococcal \hat{l} ±-Hemolysin Revealed by Reversion Mutagenesis. Journal of Biological Chemistry, 1995, 270, 23072-23076.	1.6	37
264	Key Residues for Membrane Binding, Oligomerization, and Pore Forming Activity of Staphylococcal α-Hemolysin Identified by Cysteine Scanning Mutagenesis and Targeted Chemical Modification. Journal of Biological Chemistry, 1995, 270, 23065-23071.	1.6	145
265	Restoration of pore-forming activity in staphylococcal \hat{l}_{\pm} -hemolysin by targeted covalent modification. Protein Engineering, Design and Selection, 1995, 8, 491-495.	1.0	35
266	Channels With Single Transmembrane Segments. Physiology, 1994, 9, 45-46.	1.6	0
267	A pore-forming protein with a metal-actuated switch. Protein Engineering, Design and Selection, 1994, 7, 655-662.	1.0	74
268	Self-assembling biomolecular materials in mediaine. Journal of Cellular Biochemistry, 1994, 56, 168-170.	1.2	8
269	Triggeps and switches in a self-assembling pore-forming portein. Journal of Cellular Biochemistry, 1994, 56, 177-182.	1.2	42
270	Surface labeling of key residues during assembly of the transmembrane pore formed by staphylococcal α-hemolysin. FEBS Letters, 1994, 356, 66-71.	1.3	55

#	Article	IF	CITATIONS
271	A Pore-forming protein with a protease-activated trigger. Protein Engineering, Design and Selection, 1994, 7, 91-97.	1.0	51
272	Subunit stoichiometry of staphylococcal alpha-hemolysin in crystals and on membranes: a heptameric transmembrane pore Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 12828-12831.	3.3	245
273	Homomeric assemblies of NMDAR1 splice variants are sensitive to ethanol. Neuroscience Letters, 1993, 152, 13-16.	1.0	73
274	Halothane acts on many potassium channels, including a minimal potassium channel. Neuroscience Letters, 1993, 161, 81-84.	1.0	34
275	Genetically-Engineered Protease-Activated Triggers in a Pore-Forming Protein. Materials Research Society Symposia Proceedings, 1993, 330, 209.	0.1	1
276	Genetically Engineered Pores as Metal Ion Biosensors. Materials Research Society Symposia Proceedings, 1993, 330, 217.	0.1	13
277	Assembly of α-Hemolysin: a Proteinaceous Pore with Potential Applications in Materials Synthesis. Materials Research Society Symposia Proceedings, 1992, 292, 243.	0.1	1
278	A regulatory subunit of the cAMP-dependent protein kinase down-regulated in aplysia sensory neurons during long-term sensitization. Neuron, 1992, 8, 387-397.	3.8	63
279	Combinatorial RNA splicing alters the surface charge on the NMDA receptor. FEBS Letters, 1992, 305, 27-30.	1.3	102
280	Genetically Engineered Protein Pores as Components of Synthetic Microstructures., 1992,, 41-51.		3
281	Kinetics and regulation of two catalytic subunits of cAMP-dependent protein kinase from Aplysia californica. Biochemistry, 1991, 30, 10246-10255.	1.2	13
282	Effects of Ethanol on Calcium Channels, Potassium Channels, and Vasopressin Release. Annals of the New York Academy of Sciences, 1991, 625, 249-263.	1.8	17
283	Eukaryotic Signal Transduction Pathways And Man-Made Systems Compared. Materials Research Society Symposia Proceedings, 1991, 255, 269.	0.1	2
284	α-Hemolysin: A Self-Assembling Protein Pore With Potential Applications In The Synthesis of New Materials. Materials Research Society Symposia Proceedings, 1991, 255, 201.	0.1	0
285	Primary structure of a molluscan egg-specific NADase, a second-messenger enzyme Molecular Biology of the Cell, 1991, 2, 211-218.	6.5	99
286	Monolayers from Genetically Engineered Protein Pores. Materials Research Society Symposia Proceedings, 1990, 218, 69.	0.1	5
287	Phototoxic liposomes coupled to an antibody that alone cannot modulate its cell-surface antigen kill selected target cells. Cancer Immunology, Immunotherapy, 1990, 30, 317-322.	2.0	15
288	The RII subunit of camp-dependent protein kinase binds to a common amino-terminal domain in microtubule-associated proteins 2A, 2B, and 2C. Neuron, 1989, 3, 639-645.	3.8	131

#	Article	IF	Citations
289	Two catalytic subunits of cAMP-dependent protein kinase generated by alternative RNA splicing are expressed in Aplysia neurons. Neuron, 1988, 1, 853-864.	3.8	49
290	Molecular cloning and primary structure of myelin-associated glycoprotein Proceedings of the National Academy of Sciences of the United States of America, 1987, 84, 600-604.	3.3	265
291	Photoactivatable drugs. Trends in Pharmacological Sciences, 1987, 8, 138-143.	4.0	29
292	Interaction of blood coagulation factor Va with phospholipid vesicles. Examination using lipophilic photoreagents. Biochemistry, 1987, 26, 103-109.	1,2	36
293	A molecular mechanism for long-term sensitization in Aplysia. Nature, 1987, 329, 62-65.	13.7	185
294	A carbene-yielding amino acid for incorporation into peptide photoaffinity reagents. Analytical Biochemistry, 1985, 144, 132-141.	1.1	60
295	The Delivery of Phototoxic Drugs to Selected Cells. Annals of the New York Academy of Sciences, 1985, 446, 403-414.	1.8	7
296	Secondary structure and assembly mechanism of an oligomeric channel protein. Biochemistry, 1985, 24, 1915-1920.	1.2	185
297	Photoaffinity Labeling and Related Techniques. , 1984, , 433-490.		38
298	Photoactivated Hydrophobic Reagents for Integral Membrane Proteins., 1982,, 185-194.		11
299	Corrections - Photogenerated Reagents for Membranes: Selective Labeling of Intrinsic Membrane Proteins in the Human Erythrocyte Membrane. Biochemistry, 1981, 20, 5094-5094.	1.2	0
300	Site of attachment of retinal in bacteriorhodopsin Proceedings of the National Academy of Sciences of the United States of America, 1981, 78, 2225-2229.	3.3	166
301	Delipidation of bacteriorhodopsin and reconstitution with exogenous phospholipid Proceedings of the National Academy of Sciences of the United States of America, 1980, 77, 323-327.	3.3	115
302	Photogenerated reagents for membranes: selective labeling of intrinsic membrane proteins in the human erythrocyte membrane. Biochemistry, 1980, 19, 3883-3892.	1.2	91
303	Photogenerated, Hydrophobic Reagents for Intrinsic Membrane Proteins. Annals of the New York Academy of Sciences, 1980, 346, 45-58.	1.8	9
304	Inhibitors of Photosynthetic Electron Transport. The Properties of Diazidodialkylbenzoquinones. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 1979, 34, 490-492.	0.6	3
305	Selective labelling of the hydrophobic segments of intrinsic membrane proteins with a lipophilic photogenerated carbene. Nature, 1979, 280, 841-843.	13.7	57
306	Propane-1,3-dithiol: A selective reagent for the efficient reduction of alkyl and aryl azides to amines. Tetrahedron Letters, 1978, 19, 3633-3634.	0.7	194

HAGAN BAYLEY

#	Article	IF	CITATIONS
307	Reduction of aryl azides by thiols: Implications for the use of photoaffinity reagents. Biochemical and Biophysical Research Communications, 1978, 80, 568-572.	1.0	207
308	Photogenerated reagents for membrane labeling. 1. Phenylnitrene formed within the lipid bilayer. Biochemistry, 1978, 17, 2414-2419.	1.2	127
309	Photogenerated reagents for membrane labeling. 2. Phenylcarbene and adamantylidene formed within the lipid bilayer. Biochemistry, 1978, 17, 2420-2423.	1.2	115
310	[8] Photoaffinity labeling. Methods in Enzymology, 1977, 46, 69-114.	0.4	463