Robert S Welner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8377530/publications.pdf

Version: 2024-02-01

43 papers

1,220 citations

471509 17 h-index 395702 33 g-index

43 all docs 43 docs citations

43 times ranked

2843 citing authors

#	Article	IF	CITATIONS
1	Serine-threonine Kinase Receptor-Associated Protein is a Critical Mediator of APC Mutation–Induced Intestinal Tumorigenesis Through a Feed-Forward Mechanism. Gastroenterology, 2022, 162, 193-208.	1.3	5
2	Isocitrate dehydrogenase mutations are associated with altered IL- $1\hat{l}^2$ responses in acute myeloid leukemia. Leukemia, 2022, 36, 923-934.	7.2	3
3	Response to NK cell content does not seem to influence engraftment in exÂvivo TÂcell depleted haploidentical stem cell transplantation. Stem Cell Reports, 2022, 17, 446-447.	4.8	O
4	E-cadherin is regulated by GATA-2 and marks the early commitment of mouse hematopoietic progenitors to the basophil and mast cell fates. Science Immunology, 2021, 6, .	11.9	25
5	PU.1 enforces quiescence and limits hematopoietic stem cell expansion during inflammatory stress. Journal of Experimental Medicine, 2021, 218, .	8.5	49
6	Identification of a targetable KRAS-mutant epithelial population in non-small cell lung cancer. Communications Biology, 2021, 4, 370.	4.4	12
7	Core-binding factor leukemia hijacks the T-cell–prone PU.1 antisense promoter. Blood, 2021, 138, 1345-1358.	1.4	12
8	Metabolic alterations mediated by STAT3 promotes drug persistence in CML. Leukemia, 2021, 35, 3371-3382.	7.2	19
9	TNF- $\hat{l}\pm$ -induced alterations in stromal progenitors enhance leukemic stem cell growth via CXCR2 signaling. Cell Reports, 2021, 36, 109386.	6.4	15
10	Improved hematopoietic stem cell transplantation upon inhibition of natural killer cell-derived interferon-gamma. Stem Cell Reports, 2021, 16, 1999-2013.	4.8	6
11	Inflammatory Cytokines Shape an Altered Immune Response During Myeloid Malignancies. Frontiers in Immunology, 2021, 12, 772408.	4.8	12
12	Suppression of multiple antiâ€apoptotic BCL2 family proteins recapitulates the effects of JAK2 inhibitors in JAK2V617F driven myeloproliferative neoplasms. Cancer Science, 2021, , .	3.9	1
13	Lysine acetyltransferase Tip60 is required for hematopoietic stem cell maintenance. Blood, 2020, 136, 1735-1747.	1.4	33
14	Single-Cell RNA-Seq Mapping of Human Thymopoiesis Reveals Lineage Specification Trajectories and a Commitment Spectrum in T Cell Development. Immunity, 2020, 52, 1105-1118.e9.	14.3	58
15	Bone marrow Tregs mediate stromal cell function and support hematopoiesis via IL-10. JCI Insight, 2020, 5, .	5.0	19
16	Selective LXR agonist DMHCA corrects retinal and bone marrow dysfunction in type 2 diabetes. JCI Insight, 2020, 5, .	5.0	14
17	Core Binding Factor Leukemias Utilize a Physiologic Sense/Antisense Promoter Switch Employed By T-Cells. Blood, 2020, 136, 40-41.	1.4	0
18	Mapping Distinct Bone Marrow Niche Populations and Their Differentiation Paths. Cell Reports, 2019, 28, 302-311.e5.	6.4	167

#	Article	IF	Citations
19	SIRT1 regulates metabolism and leukemogenic potential in CML stem cells. Journal of Clinical Investigation, 2019, 129, 2685-2701.	8.2	56
20	The basic helix-loop-helix transcription factor SHARP1 is an oncogenic driver in MLL-AF6 acute myelogenous leukemia. Nature Communications, 2018, 9, 1622.	12.8	20
21	The IL-33-PIN1-IRAK-M axis is critical for type 2 immunity in IL-33-induced allergic airway inflammation. Nature Communications, 2018, 9, 1603.	12.8	58
22	C/EBPÎ ³ is dispensable for steady-state and emergency granulopoiesis. Haematologica, 2018, 103, e331-e335.	3.5	6
23	SIRT1 Mediates Enhanced Mitochondrial Oxidative Phosphorylation in Chronic Myelogenous Leukemia Stem Cells. Blood, 2018, 132, 932-932.	1.4	2
24	C/Ebpg (CCAAT/Enhancer Binding Protein Gamma) Balances Cytotoxic and Secretory Potential of Natural Killer Cells. Blood, 2018, 132, 3721-3721.	1.4	1
25	TNF-α-Induced Bone Marrow Stromal Progenitor Alterations Enhance Leukemic Stem Cell Growth and Treatment Resistance Via Increased CXCL1-CXCR2 Signaling. Blood, 2018, 132, 875-875.	1.4	1
26	Regulation of normal and leukemic stem cells through cytokine signaling and the microenvironment. International Journal of Hematology, 2017, 105, 566-577.	1.6	27
27	ZNF143 protein is an important regulator of the myeloid transcription factor C/EBPα. Journal of Biological Chemistry, 2017, 292, 18924-18936.	3.4	20
28	Acetylation of C/EBPα inhibits its granulopoietic function. Nature Communications, 2016, 7, 10968.	12.8	38
29	Targeted BMI1 inhibition impairs tumor growth in lung adenocarcinomas with low CEBPα expression. Science Translational Medicine, 2016, 8, 350ra104.	12.4	45
30	The second hit of DNA methylation. Molecular and Cellular Oncology, 2016, 3, e1093690.	0.7	5
31	The DNA Ligase IV Syndrome R278H Mutation Impairs B Lymphopoiesis via Error-Prone Nonhomologous End-Joining. Journal of Immunology, 2016, 196, 244-255.	0.8	4
32	Treatment of Chronic Myelogenous Leukemia by Blocking Cytokine Alterations Found in Normal Stem and Progenitor Cells. Cancer Cell, 2015, 27, 671-681.	16.8	112
33	Hematopoietic Differentiation Is Required for Initiation of Acute Myeloid Leukemia. Cell Stem Cell, 2015, 17, 611-623.	11.1	97
34	\hat{l}^2 -Catenin Contributes to Lung Tumor Development Induced by EGFR Mutations. Cancer Research, 2014, 74, 5891-5902.	0.9	76
35	9-1-1: HSCs Respond to Emergency Calls. Cell Stem Cell, 2014, 14, 415-416.	11.1	12
36	The Runx-PU.1 pathway preserves normal and AML/ETO9a leukemic stem cells. Blood, 2014, 124, 2391-2399.	1.4	32

#	Article	lF	CITATIONS
37	Lig4 Is Essential for Maintaining HSC Homeostasis. Blood, 2014, 124, 606-606.	1.4	1
38	Relationship Between Self-Renewal and Differentiation Pathways in Stem Cells and Leukemia. Blood, 2014, 124, 4789-4789.	1.4	0
39	Sustained PU.1 Levels Balance Cell-Cycle Regulators to Prevent Exhaustion of Adult Hematopoietic Stem Cells. Molecular Cell, 2013, 49, 934-946.	9.7	127
40	C/EBPα is required for development of dendritic cell progenitors. Blood, 2013, 121, 4073-4081.	1.4	28
41	The Essential Role of DNA Repair in Hematopoietic Stem Cell Homeostasis and Disease Blood, 2012, 120, 2328-2328.	1.4	0
42	Sociology of Normal Stem and Progenitor Cells in CML Niche. Blood, 2012, 120, 1234-1234.	1.4	0
43	Deciphering Metabolic Adaptability of Leukemic Stem Cells. Frontiers in Oncology, 0, 12, .	2.8	2