Michael B Pritz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8377345/publications.pdf

Version: 2024-02-01

471509 477307 47 876 17 29 citations h-index g-index papers 47 47 47 397 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Do crocodiles have a zona incerta?. Journal of Comparative Neurology, 2022, 530, 1195-1212.	1.6	4
2	Thalamic reticular nucleus in <i>Alligator mississippiensis</i> Journal of Comparative Neurology, 2021, 529, 3785-3844.	1.6	6
3	Magnetic resonance diffusion tensor tractography of a midbrain auditory circuit in Alligator. Neuroscience Letters, 2020, 738, 135251.	2.1	3
4	Thalamic Reticular Nucleus in <i>Caiman crocodilus</i> : Immunohistochemical Staining. Brain, Behavior and Evolution, 2018, 92, 142-166.	1.7	6
5	Angioarchitectures and Hemodynamic Characteristics of Posterior Communicating Artery Aneurysms and Their Association with Rupture Status. American Journal of Neuroradiology, 2017, 38, 2111-2118.	2.4	20
6	Thalamic reticular nucleus in Caiman crocodilus: forebrain connections. Neuroscience Letters, 2016, 627, 65-70.	2.1	5
7	Crocodilian Forebrain: Evolution and Development. Integrative and Comparative Biology, 2015, 55, 949-961.	2.0	13
8	Dorsal thalamic nuclei in Caiman crocodilus. Neuroscience Letters, 2014, 581, 57-62.	2.1	11
9	Perforator and Secondary Branch Origin in Relation to the Neck of Saccular, Cerebral Bifurcation Aneurysms. World Neurosurgery, 2014, 82, 726-732.	1.3	10
10	Geometry of Saccular Cerebral Aneurysms Not Associated with a Branch Vessel. Journal of Stroke and Cerebrovascular Diseases, 2014, 23, 540-544.	1.6	2
11	Angiographically Visible and Invisible Arteriovenous Malformation in the Same Patient. Journal of Stroke and Cerebrovascular Diseases, 2012, 21, 504-506.	1.6	0
12	Geometry of Saccular, Side-branch Cerebral Aneurysms: Implications for Treatment. Journal of Stroke and Cerebrovascular Diseases, 2012, 21, 391-394.	1.6	1
13	Interconnections between the dorsal column nucleus and the cerebellum in a reptile. Neuroscience Letters, 2011, 495, 183-186.	2.1	1
14	Cerebral Aneurysm Classification Based on Angioarchitecture. Journal of Stroke and Cerebrovascular Diseases, 2011, 20, 162-167.	1.6	37
15	Skull Base Osteoradionecrosis following Radiotherapy for Acromegaly. Laryngoscope, 2010, 120, S34-S34.	2.0	O
16	Forebrain and midbrain fiber tract formation during early development in Alligator embryos. Brain Research, 2010, 1313, 34-44.	2.2	3
17	Cell proliferation during early diencephalon development in Alligator. Brain Research, 2008, 1203, 12-17.	2.2	2
18	Usefulness of Catheter Angiography in the Evaluation of Common Carotid Artery Origin Occlusion. Journal of Stroke and Cerebrovascular Diseases, 2008, 17, 42-46.	1.6	2

#	Article	IF	CITATIONS
19	Thrombosis, Growth, Recanalization, and Rupture of a Saccular, Non-Giant Cerebral Aneurysm. Journal of Stroke and Cerebrovascular Diseases, 2008, 17, 158-160.	1.6	5
20	Early Diencephalon Development in <i>Alligator</i> . Brain, Behavior and Evolution, 2008, 71, 15-31.	1.7	11
21	Comparisons and Homology in Adult and Developing Vertebrate Central Nervous Systems. Brain, Behavior and Evolution, 2005, 66, 222-233.	1.7	7
22	Closure of Dural Defects after Anterior Clinoid and Optic Canal Roof Removal: Technical Note. Skull Base, 2004, 14, 217-220.	0.4	0
23	Cell Proliferation during Early Hindbrain Development in <i>Alligator</i> . Brain, Behavior and Evolution, 2003, 62, 193-200.	1.7	5
24	Midbrain projecting dorsal column nucleus neurons in a reptile. Brain Research Bulletin, 2002, 58, 219-224.	3.0	2
25	Glial fibrillary acidic protein-immunopositive structures in the brain of a Crocodilian, Caiman crocodilus, and its bearing on the evolution of astroglia. Journal of Comparative Neurology, 2001, 431, 460-480.	1.6	43
26	Glial fibrillary acidic protein-immunopositive structures in the brain of a Crocodilian, Caiman crocodilus, and its bearing on the evolution of astroglia., 2001, 431, 460.		1
27	Glial fibrillary acidic proteinâ€immunopositive structures in the brain of a Crocodilian, Caiman crocodilus, and its bearing on the evolution of astroglia. Journal of Comparative Neurology, 2001, 431, 460-480.	1.6	12
28	Calcium Binding Protein Immunoreactivity in Nucleus Rotundus in a Reptile, <i>Caiman crocodilus</i> . Brain, Behavior and Evolution, 1999, 53, 277-287.	1.7	26
29	Rhombomere development in a reptilian embryo. Journal of Comparative Neurology, 1999, 411, 317-326.	1.6	17
30	Some Morphological Features of a Visual Thalamic Nucleus in a Reptile: Observations on Nucleus rotundus in <i>Caiman crocodilus</i> . Brain, Behavior and Evolution, 1997, 49, 237-248.	1.7	8
31	Timing of Carotid Endarterectomy After Stroke. Stroke, 1997, 28, 2563-2567.	2.0	62
32	The Thalamus of Reptiles and Mammals: Similarities and Differences. Brain, Behavior and Evolution, 1995, 46, 197-208.	1.7	34
33	Morphological and GAD immunocytochemical properties of the dorsal lateral geniculate nucleus in a reptile. Brain Research Bulletin, 1994, 33, 723-726.	3.0	10
34	Glutamic acid decarboxylase immunoreactivity in some dorsal thalamic nuclei in Crocodilia. Neuroscience Letters, 1994, 165, 109-112.	2.1	12
35	Anatomical Identification of a Telencephalic Somatosensory Area in a Reptile, <i>Caiman crocodilus (Part 1 of 2)</i> . Brain, Behavior and Evolution, 1994, 43, 107-117.	1.7	18
36	Neuronal subpopulations in a reptilian thalamic reticular nucleus. NeuroReport, 1993, 4, 791-794.	1.2	12

#	Article	IF	CITATIONS
37	Calcium binding protein immunoreactivity in a reptilian thalamic reticular nucleus. Brain Research, 1991, 554, 325-328.	2.2	23
38	Thalamic Projections from a Midbrain Somatosensory Area in a Reptile, <i>Caiman crocodilus</i> . Brain, Behavior and Evolution, 1990, 36, 1-13.	1.7	15
39	A different type of vertebrate thalamic organization. Brain Research, 1990, 525, 330-334.	2.2	29
40	Reptilian Somatosensory Midbrain: Identification Based on Input from the Spinal Cord and Dorsal Column Nucleus. Brain, Behavior and Evolution, 1989, 33, 1-14.	1.7	29
41	Thalamic nuclei that project to reptilian telencephalon lack GABA and GAD immunoreactive neurons and puncta. Brain Research, 1988, 457, 154-159.	2.2	24
42	Percentage of intrinsic and relay cells in a thalamic nucleus projecting to general cortex in reptiles, Caiman crocodilus. Brain Research, 1987, 409, 146-150.	2,2	18
43	Percentage of relay and intrinsic neurons in two sensory thalamic nuclei projecting to the non-cortical telencephalon in reptiles Caiman crocodilus. Brain Research, 1986, 376, 169-174.	2.2	16
44	Succinate dehydrogenase activity in the telencephalon of crocodiles correlates with the projection areas of sensory thalamic nuclei. Brain Research, 1977, 124, 357-360.	2.2	23
45	Anatomical identification of a telencephalic visual area in crocodiles: Ascending connections of nucleus rotundus inCaiman crocodilus. Journal of Comparative Neurology, 1975, 164, 323-338.	1.6	91
46	Ascending connections of a midbrain auditory area in a crocodile, <i>Caiman crocodilus</i> . Journal of Comparative Neurology, 1974, 153, 179-197.	1.6	112
47	Ascending connections of a thalamic auditory area in a crocodile, Caiman crocodilus. Journal of Comparative Neurology, 1974, 153, 199-213.	1.6	85