
Dean W Felsher

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8376396/publications.pdf Version: 2024-02-01

DEAN W FEISHED

#	Article	IF	CITATIONS
1	The MYC oncogene — the grand orchestrator of cancer growth and immune evasion. Nature Reviews Clinical Oncology, 2022, 19, 23-36.	27.6	253
2	Anti-PD-L1 F(ab) Conjugated PEC-PLGA Nanoparticle Enhances Immune Checkpoint Therapy. Nanotheranostics, 2022, 6, 243-255.	5.2	17
3	Azapodophyllotoxin Causes Lymphoma and Kidney Cancer Regression by Disrupting Tubulin and Monoglycerols. ACS Medicinal Chemistry Letters, 2022, 13, 615-622.	2.8	0
4	Mitochondrial copper depletion suppresses triple-negative breast cancer in mice. Nature Biotechnology, 2021, 39, 357-367.	17.5	163
5	Genomic Analysis of Vascular Invasion in HCC Reveals Molecular Drivers and Predictive Biomarkers. Hepatology, 2021, 73, 2342-2360.	7.3	53
6	A mathematical model of tumor regression and recurrence after therapeutic oncogene inactivation. Scientific Reports, 2021, 11, 1341.	3.3	8
7	Twist1 is required for the development of UVBâ€induced squamous cell carcinoma. Molecular Carcinogenesis, 2021, 60, 342-353.	2.7	9
8	Smart Selfâ€Assembly Amphiphilic Cyclopeptideâ€Ðye for Nearâ€Infrared Windowâ€II Imaging. Advanced Materials, 2021, 33, e2006902.	21.0	50
9	Amphiphilic Cyclopeptideâ€Dyes: Smart Selfâ€Assembly Amphiphilic Cyclopeptideâ€Dye for Nearâ€Infrared Windowâ€II Imaging (Adv. Mater. 16/2021). Advanced Materials, 2021, 33, 2170121.	21.0	0
10	Generation of a Tetracycline Regulated Mouse Model of MYC-Induced T-Cell Acute Lymphoblastic Leukemia. Methods in Molecular Biology, 2021, 2318, 297-312.	0.9	2
11	MYC ASO Impedes Tumorigenesis and Elicits Oncogene Addiction in Autochthonous Transgenic Mouse Models of HCC and RCC. Molecular Therapy - Nucleic Acids, 2020, 21, 850-859.	5.1	17
12	The Myc and Ras Partnership in Cancer: Indistinguishable Alliance or Contextual Relationship?. Cancer Research, 2020, 80, 3799-3802.	0.9	12
13	MYC functions as a switch for natural killer cell-mediated immune surveillance of lymphoid malignancies. Nature Communications, 2020, 11, 2860.	12.8	45
14	The Key Characteristics of Carcinogens: Relationship to the Hallmarks of Cancer, Relevant Biomarkers, and Assays to Measure Them. Cancer Epidemiology Biomarkers and Prevention, 2020, 29, 1887-1903.	2.5	52
15	MYC and Twist1 cooperate to drive metastasis by eliciting crosstalk between cancer and innate immunity. ELife, 2020, 9, .	6.0	38
16	Conditional Upregulation of IFN-α Alone Is Sufficient to Induce Systemic Lupus Erythematosus. Journal of Immunology, 2019, 203, 835-843.	0.8	12
17	The MYC Oncogene Cooperates with Sterol-Regulated Element-Binding Protein to Regulate Lipogenesis Essential for Neoplastic Growth. Cell Metabolism, 2019, 30, 556-572.e5.	16.2	120
18	<i>MYC</i> Regulates the <i>HIF2α</i> Stemness Pathway via <i>Nanog</i> and <i>Sox2</i> to Maintain Self-Renewal in Cancer Stem Cells versus Non-Stem Cancer Cells. Cancer Research, 2019, 79, 4015-4025.	0.9	67

#	Article	IF	CITATIONS
19	Mistletoe extract Fraxini inhibits the proliferation of liver cancer by down-regulating c-Myc expression. Scientific Reports, 2019, 9, 6428.	3.3	21
20	Stabilization of the Max Homodimer with a Small Molecule Attenuates Myc-Driven Transcription. Cell Chemical Biology, 2019, 26, 711-723.e14.	5.2	82
21	A Tale of Two Complications of Obesity: NASH and Hepatocellular Carcinoma. Hepatology, 2019, 70, 1056-1058.	7.3	37
22	Mebendazole for Differentiation Therapy of Acute Myeloid Leukemia Identified by a Lineage Maturation Index. Scientific Reports, 2019, 9, 16775.	3.3	14
23	MYC Oncogene Abrogates Natural Killer (NK) Cell-Mediated Immune Surveillance of B- and T- Lymphoid Malignancies By Suppressing STAT1/2-Type I IFN Signaling. Blood, 2019, 134, 730-730.	1.4	0
24	The MYC oncogene is a global regulator of the immune response. Blood, 2018, 131, 2007-2015.	1.4	158
25	Administration of low-dose combination anti-CTLA4, anti-CD137, and anti-OX40 into murine tumor or proximal to the tumor draining lymph node induces systemic tumor regression. Cancer Immunology, Immunotherapy, 2018, 67, 47-60.	4.2	29
26	Anti-miR-17 therapy delays tumorigenesis in MYC-driven hepatocellular carcinoma (HCC). Oncotarget, 2018, 9, 5517-5528.	1.8	33
27	Lipid nanoparticles that deliver IL-12 messenger RNA suppress tumorigenesis in MYC oncogene-driven hepatocellular carcinoma. , 2018, 6, 125.		85
28	The glutathione redox system is essential to prevent ferroptosis caused by impaired lipid metabolism in clear cell renal cell carcinoma. Oncogene, 2018, 37, 5435-5450.	5.9	239
29	O-GlcNAcylation is required for mutant KRAS-induced lung tumorigenesis. Journal of Clinical Investigation, 2018, 128, 4924-4937.	8.2	51
30	MYC Functions As a Master Switch for Natural Killer Cell-Mediated Immune Surveillance of Lymphoid Malignancies. Blood, 2018, 132, 2619-2619.	1.4	5
31	MYC: Master Regulator of Immune Privilege. Trends in Immunology, 2017, 38, 298-305.	6.8	70
32	Oncogene KRAS activates fatty acid synthase, resulting in specific ERK and lipid signatures associated with lung adenocarcinoma. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4300-4305.	7.1	110
33	MYC activation cooperates with Vhl and Ink4a/Arf loss to induce clear cell renal cell carcinoma. Nature Communications, 2017, 8, 15770.	12.8	64
34	DNMT3B overexpression contributes to aberrant DNA methylation and MYC-driven tumor maintenance in T-ALL and Burkitt's lymphoma. Oncotarget, 2017, 8, 76898-76920.	1.8	44
35	Oncogenes and the Initiation and Maintenance of Tumorigenesis. , 2017, , 143-157.		1
36	NAFLD causes selective CD4+ T lymphocyte loss and promotes hepatocarcinogenesis. Nature, 2016, 531, 253-257.	27.8	552

#	Article	IF	CITATIONS
37	KB004, a first in class monoclonal antibody targeting the receptor tyrosine kinase EphA3, in patients with advanced hematologic malignancies: Results from a phase 1 study. Leukemia Research, 2016, 50, 123-131.	0.8	50
38	Affordable Cancer Medications Are Within Reach but We Need a Different Approach. Journal of Clinical Oncology, 2016, 34, 2194-2195.	1.6	1
39	MYC regulates the antitumor immune response through CD47 and PD-L1. Science, 2016, 352, 227-231.	12.6	989
40	Intratumoral Administration of the Immunotherapeutic Combination Anti-ctla4, Anti-cd137 and Anti-ox40: Comparison to Systemic Administration, Peri-Draining Lymph Node Injection, and Cellular Vaccine in a Mouse Lymphoma Model. Blood, 2016, 128, 4172-4172.	1.4	3
41	Metabolic vulnerabilities of MYC-induced cancer. Oncotarget, 2016, 7, 29879-29880.	1.8	14
42	BIM mediates oncogene inactivation-induced apoptosis in multiple transgenic mouse models of acute lymphoblastic leukemia. Oncotarget, 2016, 7, 26926-26934.	1.8	16
43	BIM-mediated apoptosis and oncogene addiction. Aging, 2016, 8, 1834-1835.	3.1	6
44	Assessing the carcinogenic potential of low-dose exposures to chemical mixtures in the environment: the challenge ahead. Carcinogenesis, 2015, 36, S254-S296.	2.8	239
45	The effect of environmental chemicals on the tumor microenvironment. Carcinogenesis, 2015, 36, S160-S183.	2.8	97
46	Cancer prevention and therapy through the modulation of the tumor microenvironment. Seminars in Cancer Biology, 2015, 35, S199-S223.	9.6	285
47	MYC oncogene overexpression drives renal cell carcinoma in a mouse model through glutamine metabolism. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 6539-6544.	7.1	211
48	MYC Disrupts the Circadian Clock and Metabolism in Cancer Cells. Cell Metabolism, 2015, 22, 1009-1019.	16.2	217
49	Designing a broad-spectrum integrative approach for cancer prevention and treatment. Seminars in Cancer Biology, 2015, 35, S276-S304.	9.6	220
50	Targeted inhibition of tumor-specific glutaminase diminishes cell-autonomous tumorigenesis. Journal of Clinical Investigation, 2015, 125, 2293-2306.	8.2	319
51	ARF: Connecting senescence and innate immunity for clearance. Aging, 2015, 7, 613-615.	3.1	3
52	p19ARF is a critical mediator of both cellular senescence and an innate immune response associated with MYC inactivation in mouse model of acute leukemia. Oncotarget, 2015, 6, 3563-3577.	1.8	20
53	Abstract PR14: HIF-2alpha regulates self-renewal of MYC dependent cancer stem cells. , 2015, , .		0

#	Article	IF	CITATIONS
55	Abstract B02: The role of the immune system in sustained tumor regression following oncogene inactivation. , 2015, , .		0
56	Abstract A48: Gene expression signatures associated with MYC oncogene addiction in lymphoma. , 2015, , \cdot		0
57	Activation of Cre Recombinase Alone Can Induce Complete Tumor Regression. PLoS ONE, 2014, 9, e107589.	2.5	22
58	Addiction to multiple oncogenes can be exploited to prevent the emergence of therapeutic resistance. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E3316-24.	7.1	14
59	MYC Activation Is a Hallmark of Cancer Initiation and Maintenance. Cold Spring Harbor Perspectives in Medicine, 2014, 4, a014241-a014241.	6.2	632
60	miR-17–92 explainsMYConcogene addiction. Molecular and Cellular Oncology, 2014, 1, e970092.	0.7	1
61	Inactivation of <scp>MYC</scp> reverses tumorigenesis. Journal of Internal Medicine, 2014, 276, 52-60.	6.0	51
62	Oncogene withdrawal engages the immune system to induce sustained cancer regression. , 2014, 2, 24.		19
63	Angiocrine Factors Deployed by Tumor Vascular Niche Induce B Cell Lymphoma Invasiveness and Chemoresistance. Cancer Cell, 2014, 25, 350-365.	16.8	203
64	Bioorthogonal cyclization-mediated in situ self-assembly of small-molecule probes for imaging caspase activity in vivo. Nature Chemistry, 2014, 6, 519-526.	13.6	403
65	An essential role for the immune system in the mechanism of tumor regression following targeted oncogene inactivation. Immunologic Research, 2014, 58, 282-291.	2.9	18
66	Development of Novel Tumorâ€Targeted Theranostic Nanoparticles Activated by Membraneâ€Type Matrix Metalloproteinases for Combined Cancer Magnetic Resonance Imaging and Therapy. Small, 2014, 10, 566-575.	10.0	127
67	MYC through miR-17-92 Suppresses Specific Target Genes to Maintain Survival, Autonomous Proliferation, and a Neoplastic State. Cancer Cell, 2014, 26, 262-272.	16.8	155
68	Alteration of the lipid profile in lymphomas induced by MYC overexpression. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 10450-10455.	7.1	118
69	Oncogene addiction: resetting the safety switch?. Oncotarget, 2014, 5, 7986-7987.	1.8	6
70	Tumor Dormancy, Oncogene Addiction, Cellular Senescence, and Self-Renewal Programs. Advances in Experimental Medicine and Biology, 2013, 734, 91-107.	1.6	36
71	Noncanonical roles of the immune system in eliciting oncogene addiction. Current Opinion in Immunology, 2013, 25, 246-258.	5.5	11
72	Regulation of accumulation and function of myeloid derived suppressor cells in different murine models of hepatocellular carcinoma. Journal of Hepatology, 2013, 59, 1007-1013.	3.7	154

#	Article	IF	CITATIONS
73	CD271 ⁺ Bone Marrow Mesenchymal Stem Cells May Provide a Niche for Dormant <i>Mycobacterium tuberculosis</i> . Science Translational Medicine, 2013, 5, 170ra13.	12.4	171
74	Role of MYCN in retinoblastoma. Lancet Oncology, The, 2013, 14, 270-271.	10.7	30
75	Characterization of MYC-Induced Tumorigenesis by in Situ Lipid Profiling. Analytical Chemistry, 2013, 85, 4259-4262.	6.5	32
76	A c-Myc Activation Sensor-Based High-Throughput Drug Screening Identifies an Antineoplastic Effect of Nitazoxanide. Molecular Cancer Therapeutics, 2013, 12, 1896-1905.	4.1	42
77	Real-time nanoscale proteomic analysis of the novel multi-kinase pathway inhibitor rigosertib to measure the response to treatment of cancer. Expert Opinion on Investigational Drugs, 2013, 22, 1495-1509.	4.1	8
78	Dormant Cancer Cells Contribute to Residual Disease in a Model of Reversible Pancreatic Cancer. Cancer Research, 2013, 73, 1821-1830.	0.9	66
79	In VivoImaging-Based Mathematical Modeling Techniques That Enhance the Understanding of Oncogene Addiction in relation to Tumor Growth. Computational and Mathematical Methods in Medicine, 2013, 2013, 1-8.	1.3	0
80	Nanoscale proteomic profiling to define diagnostic signatures and biomarkers of therapeutic activity in patients with RCC Journal of Clinical Oncology, 2013, 31, 432-432.	1.6	0
81	Twist1 Suppresses Senescence Programs and Thereby Accelerates and Maintains Mutant Kras-Induced Lung Tumorigenesis. PLoS Genetics, 2012, 8, e1002650.	3.5	86
82	Mathematical modeling of the interactions between cellular programs in response to oncogene inactivation: Incorporation of both cell intrinsic and cell extrinsic (Immune mediated) effects. , 2012, , .		0
83	High throughput automated chromatin immunoprecipitation as a platform for drug screening and antibody validation. Lab on A Chip, 2012, 12, 2190.	6.0	60
84	HIFâ€2α Suppresses p53 to Enhance the Stemness and Regenerative Potential of Human Embryonic Stem Cells. Stem Cells, 2012, 30, 1685-1695.	3.2	68
85	Immunology in the clinic review series; focus on cancer: multiple roles for the immune system in oncogene addiction. Clinical and Experimental Immunology, 2012, 167, 188-194.	2.6	24
86	Treatment of higher risk myelodysplastic syndrome patients unresponsive to hypomethylating agents with ON 01910.Na. Leukemia Research, 2012, 36, 98-103.	0.8	60
87	Loss of Dnmt3b function upregulates the tumor modifier Ment and accelerates mouse lymphomagenesis. Journal of Clinical Investigation, 2012, 122, 163-177.	8.2	61
88	SIRT1 and c-Myc Promote Liver Tumor Cell Survival and Predict Poor Survival of Human Hepatocellular Carcinomas. PLoS ONE, 2012, 7, e45119.	2.5	120
89	"Picolog,―a Synthetically-Available Bryostatin Analog, Inhibits Growth of MYC-Induced Lymphoma <i>In Vivo</i> . Oncotarget, 2012, 3, 58-66.	1.8	37
90	Use of nano-immuno assay to generate rapid, quantitative nanoscale proteomic profiling of the hypoxia pathway in renal cell carcinoma clinical specimens Journal of Clinical Oncology, 2012, 30, 10513-10513.	1.6	0

#	Article	IF	CITATIONS
91	Reactive Oxygen Species Regulate Nucleostemin Oligomerization and Protein Degradation. Journal of Biological Chemistry, 2011, 286, 11035-11046.	3.4	14
92	Survival and Death Signals Can Predict Tumor Response to Therapy After Oncogene Inactivation. Science Translational Medicine, 2011, 3, 103ra99.	12.4	38
93	Functional Interactions between Retinoblastoma and c-MYC in a Mouse Model of Hepatocellular Carcinoma. PLoS ONE, 2011, 6, e19758.	2.5	14
94	Lymphomas that recur after MYC suppression continue to exhibit oncogene addiction. Proceedings of the United States of America, 2011, 108, 17432-17437.	7.1	38
95	MYC Phosphorylation, Activation, and Tumorigenic Potential in Hepatocellular Carcinoma Are Regulated by HMG-CoA Reductase. Cancer Research, 2011, 71, 2286-2297.	0.9	160
96	CD4+ T Cells Contribute to the Remodeling of the Microenvironment Required for Sustained Tumor Regression upon Oncogene Inactivation. Cancer Cell, 2010, 18, 485-498.	16.8	304
97	Development of a Micro-Computed Tomography–Based Image-Guided Conformal Radiotherapy System for Small Animals. International Journal of Radiation Oncology Biology Physics, 2010, 78, 297-305.	0.8	67
98	Myc and a Cdk2 senescence switch. Nature Cell Biology, 2010, 12, 7-9.	10.3	21
99	MYC as a regulator of ribosome biogenesis and protein synthesis. Nature Reviews Cancer, 2010, 10, 301-309.	28.4	751
100	Hypoxia in Models of Lung Cancer: Implications for Targeted Therapeutics. Clinical Cancer Research, 2010, 16, 4843-4852.	7.0	81
101	Definition of an Enhanced Immune Cell Therapy in Mice That Can Target Stem-Like Lymphoma Cells. Cancer Research, 2010, 70, 9837-9845.	0.9	25
102	MYC Inactivation Elicits Oncogene Addiction through Both Tumor Cell-Intrinsic and Host-Dependent Mechanisms. Genes and Cancer, 2010, 1, 597-604.	1.9	105
103	PET Imaging of Tumor Neovascularization in a Transgenic Mouse Model with a Novel 64Cu-DOTA-Knottin Peptide. Cancer Research, 2010, 70, 9022-9030.	0.9	43
104	Conditional TPM3-ALK and NPM-ALK transgenic mice develop reversible ALK-positive early B-cell lymphoma/leukemia. Blood, 2010, 115, 4061-4070.	1.4	27
105	The interaction between Myc and Miz1 is required to antagonize TGFβ-dependent autocrine signaling during lymphoma formation and maintenance. Genes and Development, 2010, 24, 1281-1294.	5.9	97
106	Noninvasive molecular imaging of c-Myc activation in living mice. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 15892-15897.	7.1	38
107	Low-level shRNA Cytotoxicity Can Contribute to MYC-induced Hepatocellular Carcinoma in Adult Mice. Molecular Therapy, 2010, 18, 161-170.	8.2	39
108	Impact of Hydrodynamic Injection and phiC31 Integrase on Tumor Latency in a Mouse Model of MYC-Induced Hepatocellular Carcinoma. PLoS ONE, 2010, 5, e11367.	2.5	18

#	Article	IF	CITATIONS
109	Treatment of Higher Risk Myelodysplastic Syndrome Patients Unresponsive to Hypomethylating Agents with ON 01910.Na. Blood, 2010, 116, 4010-4010.	1.4	Ο
110	Cell Cycle Re-Entry and Mitochondrial Defects in Myc-Mediated Hypertrophic Cardiomyopathy and Heart Failure. PLoS ONE, 2009, 4, e7172.	2.5	41
111	Apoptosis-stimulating protein of p53 (ASPP2) heterozygous mice are tumor-prone and have attenuated cellular damage–response thresholds. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 4390-4395.	7.1	48
112	Autochthonous liver tumors induce systemic T cell tolerance associated with T cell receptor down-modulation. Hepatology, 2009, 49, 471-481.	7.3	13
113	Supramolecular Stacking of Doxorubicin on Carbon Nanotubes for In Vivo Cancer Therapy. Angewandte Chemie - International Edition, 2009, 48, 7668-7672.	13.8	479
114	Nanofluidic proteomic assay for serial analysis of oncoprotein activation in clinical specimens. Nature Medicine, 2009, 15, 566-571.	30.7	105
115	SPECT and PET Imaging of EGF Receptors with Site-Specifically Labeled EGF and Dimeric EGF. Bioconjugate Chemistry, 2009, 20, 742-749.	3.6	25
116	The Neuronal Expression of MYC Causes a Neurodegenerative Phenotype in a Novel Transgenic Mouse. American Journal of Pathology, 2009, 174, 891-897.	3.8	82
117	Tumor dormancy and oncogene addiction. Apmis, 2008, 116, 629-637.	2.0	33
118	An efficient and versatile system for acute and chronic modulation of renal tubular function in transgenic mice. Nature Medicine, 2008, 14, 979-984.	30.7	253
119	A quantitative PCR method to detect blood microRNAs associated with tumorigenesis in transgenic mice. Molecular Cancer, 2008, 7, 74.	19.2	13
120	Hepatotoxin-Induced Changes in the Adult Murine Liver Promote MYC-Induced Tumorigenesis. PLoS ONE, 2008, 3, e2493.	2.5	39
121	Reversing Cancer From Inside and Out: Oncogene Addiction, Cellular Senescence, and the Angiogenic Switch. Lymphatic Research and Biology, 2008, 6, 149-154.	1.1	19
122	Oncogene Addiction versus Oncogene Amnesia: Perhaps More than Just a Bad Habit?. Cancer Research, 2008, 68, 3081-3086.	0.9	90
123	18F and 18FDG PET imaging of osteosarcoma to non-invasively monitor in situ changes in cellular proliferation and bone differentiation upon MYC inactivation. Cancer Biology and Therapy, 2008, 7, 1947-1951.	3.4	14
124	Combined Analysis of Murine and Human Microarrays and ChIP Analysis Reveals Genes Associated with the Ability of MYC To Maintain Tumorigenesis. PLoS Genetics, 2008, 4, e1000090.	3.5	80
125	Genomic and Proteomic Analysis Reveals a Threshold Level of MYC Required for Tumor Maintenance. Cancer Research, 2008, 68, 5132-5142.	0.9	87
126	Combined Inactivation of MYC and K-Ras Oncogenes Reverses Tumorigenesis in Lung Adenocarcinomas and Lymphomas. PLoS ONE, 2008, 3, e2125.	2.5	74

#	Article	IF	CITATIONS
127	Enhanced NFATc1 Nuclear Occupancy Causes T Cell Activation Independent of CD28 Costimulation. Journal of Immunology, 2007, 178, 4315-4321.	0.8	38
128	Development of a conditional bioluminescent transplant model for TPM3-ALK-induced tumorigenesis as a tool to validate ALK-dependent cancer targeted therapy. Cancer Biology and Therapy, 2007, 6, 1324-1329.	3.4	18
129	Specific tumor suppressor function for E2F2 in Myc-induced T cell lymphomagenesis. Proceedings of the United States of America, 2007, 104, 15400-15405.	7.1	54
130	BCL-2 and Mutant NRAS Interact Physically and Functionally in a Mouse Model of Progressive Myelodysplasia. Cancer Research, 2007, 67, 11657-11667.	0.9	53
131	Cellular senescence is an important mechanism of tumor regression upon c-Myc inactivation. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 13028-13033.	7.1	370
132	Inhibition of HMGcoA reductase by atorvastatin prevents and reverses MYC-induced lymphomagenesis. Blood, 2007, 110, 2674-2684.	1.4	53
133	HIF-Dependent Antitumorigenic Effect of Antioxidants In Vivo. Cancer Cell, 2007, 12, 230-238.	16.8	466
134	Identifying Critical Signaling Molecules for the Treatment of Cancer. , 2007, 172, 5-24.		3
135	<i>c-Myc</i> is an important direct target of Notch1 in T-cell acute lymphoblastic leukemia/lymphoma. Genes and Development, 2006, 20, 2096-2109.	5.9	782
136	Conditional transgenic models define how MYC initiates and maintains tumorigenesis. Seminars in Cancer Biology, 2006, 16, 313-317.	9.6	133
137	Tumor Dormancy: Death and Resurrection of Cancer As Seen through Transgenic Mouse Models. Cell Cycle, 2006, 5, 1808-1811.	2.6	29
138	MYC Can Induce DNA Breaks In vivo and In vitro Independent of Reactive Oxygen Species. Cancer Research, 2006, 66, 6598-6605.	0.9	86
139	Sustained regression of tumors upon MYC inactivation requires p53 or thrombospondin-1 to reverse the angiogenic switch. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 16266-16271.	7.1	144
140	Nano-Fluidic Detection of Oncoprotein Signaling in Preclinical and Patient Lymphoma Samples Blood, 2006, 108, 2527-2527.	1.4	0
141	ASPP2 Haploinsufficiency Promotes Tumor Formation in a Mouse Model Blood, 2006, 108, 4333-4333.	1.4	0
142	Comparative genomic hybridization on mouse cDNA microarrays and its application to a murine lymphoma model. Oncogene, 2005, 24, 6101-6107.	5.9	14
143	Getting at MYC through RAS. Clinical Cancer Research, 2005, 11, 4278-4281.	7.0	36
144	Suppression of p53 by Notch in Lymphomagenesis: Implications for Initiation and Regression. Cancer Research, 2005, 65, 7159-7168.	0.9	146

#	Article	IF	CITATIONS
145	Tumor Dormancy and MYC Inactivation: Pushing Cancer to the Brink of Normalcy: Figure 1 Cancer Research, 2005, 65, 4471-4474.	0.9	94
146	Lethal Cutaneous Disease in Transgenic Mice Conditionally Expressing Type I Human T Cell Leukemia Virus Tax. Journal of Biological Chemistry, 2005, 280, 35713-35722.	3.4	54
147	Rehabilitation of cancer through oncogene inactivation. Trends in Molecular Medicine, 2005, 11, 316-321.	6.7	27
148	Conditionally MYC:insights from novel transgenic models. Cancer Letters, 2005, 226, 95-99.	7.2	38
149	Two Oncogenic Hits Are Required To Initiate Lymphomagenesis in Adult, but Not Neonatal Hosts Blood, 2005, 106, 2604-2604.	1.4	0
150	Reversible tumorigenesis. Cancer Biology and Therapy, 2004, 3, 942-944.	3.4	9
151	The human BCL6 transgene promotes the development of lymphomas in the mouse. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 14198-14203.	7.1	72
152	Developmental Context Determines Latency of MYC-Induced Tumorigenesis. PLoS Biology, 2004, 2, e332.	5.6	126
153	MYC inactivation uncovers pluripotent differentiation and tumour dormancy in hepatocellular cancer. Nature, 2004, 431, 1112-1117.	27.8	796
154	Conditional animal models: a strategy to define when oncogenes will be effective targets to treat cancer. Seminars in Cancer Biology, 2004, 14, 3-11.	9.6	57
155	Reversibility of oncogene-induced cancer. Current Opinion in Genetics and Development, 2004, 14, 37-42.	3.3	71
156	Cooperation between MYC and BCL2 to Induce Lymphoma Is Uncovered in an Adult Context Blood, 2004, 104, 1530-1530.	1.4	0
157	Cancer revoked: oncogenes as therapeutic targets. Nature Reviews Cancer, 2003, 3, 375-379.	28.4	449
158	Defective double-strand DNA break repair and chromosomal translocations by <i>MYC</i> overexpression. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 9974-9979.	7.1	144
159	How Cancers Escape Their Oncogene Habit. Cell Cycle, 2003, 2, 328-331.	2.6	21
160	Genomically complex lymphomas undergo sustained tumor regression upon MYC inactivation unless they acquire novel chromosomal translocations. Blood, 2003, 101, 2797-2803.	1.4	116
161	Pharmacological inactivation of MYC for the treatment of cancer. Drug News and Perspectives, 2003, 16, 370.	1.5	19
162	Sustained Loss of a Neoplastic Phenotype by Brief Inactivation of <i>MYC</i> . Science, 2002, 297, 102-104.	12.6	622

#	Article	IF	CITATIONS
163	c-Myc Is a Critical Target for C/EBPÎ \pm in Granulopoiesis. Molecular and Cellular Biology, 2001, 21, 3789-3806.	2.3	233
164	Reversible Tumorigenesis by MYC in Hematopoietic Lineages. Molecular Cell, 1999, 4, 199-207.	9.7	798
165	c-Myc, MHCI, and NK Resistance in Immunodeficiency Lymphomasa. Annals of the New York Academy of Sciences, 1992, 651, 467-469.	3.8	6
166	Tumor-Promoting/Associated Inflammation and the Microenvironment: A State of the Science and New Horizons. , 0, , 473-510.		0