
Shaohui Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8372172/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Abating ammonia is more cost-effective than nitrogen oxides for mitigating PM _{2.5} air pollution. Science, 2021, 374, 758-762.	12.6	191
2	Evaluating co-benefits of energy efficiency and air pollution abatement in China's cement industry. Applied Energy, 2015, 147, 192-213.	10.1	159
3	Co-benefits of energy efficiency improvement and air pollution abatement in the Chinese iron and steel industry. Energy, 2014, 78, 333-345.	8.8	151
4	Impacts of COVID-19 and fiscal stimuli on global emissions and the Paris Agreement. Nature Climate Change, 2021, 11, 200-206.	18.8	129
5	The 2020 China report of the Lancet Countdown on health and climate change. Lancet Public Health, The, 2021, 6, e64-e81.	10.0	106
6	Mapping and modeling multiple benefits of energy efficiency and emission mitigation in China's cement industry at the provincial level. Applied Energy, 2015, 155, 35-58.	10.1	63
7	Modeling energy efficiency to improve air quality and health effects of China's cement industry. Applied Energy, 2016, 184, 574-593.	10.1	63
8	Incorporating health co-benefits into technology pathways to achieve China's 2060 carbon neutrality goal: a modelling study. Lancet Planetary Health, The, 2021, 5, e808-e817.	11.4	62
9	Exploring selected pathways to low and zero CO2 emissions in China's iron and steel industry and their impacts on resources and energy. Journal of Cleaner Production, 2022, 340, 130813.	9.3	60
10	Integrated assessment of resource-energy-environment nexus in China's iron and steel industry. Journal of Cleaner Production, 2019, 232, 235-249.	9.3	58
11	Exploring the driving forces of energy consumption and environmental pollution in China's cement industry at the provincial level. Journal of Cleaner Production, 2018, 184, 274-285.	9.3	54
12	Assessing air pollution abatement co-benefits of energy efficiency improvement in cement industry: A city level analysis. Journal of Cleaner Production, 2018, 185, 761-771.	9.3	53
13	The 2021 China report of the Lancet Countdown on health and climate change: seizing the window of opportunity. Lancet Public Health, The, 2021, 6, e932-e947.	10.0	41
14	Assessing the potential of decarbonizing China's building construction by 2060 and synergy with industry sector. Journal of Cleaner Production, 2022, 359, 132086.	9.3	40
15	Potentials of energy efficiency improvement and energy–emission–health nexus in Jing-Jin-Ji's cement industry. Journal of Cleaner Production, 2021, 278, 123335.	9.3	35
16	Cutting air Pollution by Improving Energy Efficiency of China's Cement Industry. Energy Procedia, 2015, 83, 10-20.	1.8	34
17	Role of export industries on ozone pollution and its precursors in China. Nature Communications, 2020, 11, 5492.	12.8	30
18	Assessment of efficiency improvement and emission mitigation potentials in China's petroleum refining industry. Journal of Cleaner Production, 2021, 280, 124482.	9.3	30

Shaohui Zhang

#	Article	IF	CITATIONS
19	Carbon dioxide mitigation co-effect analysis of clean air policies: lessons and perspectives in China's Beijing–Tianjin–Hebei region. Environmental Research Letters, 2021, 16, 015006.	5.2	27
20	The potential of industrial electricity savings to reduce air pollution from coal-fired power generation in China. Journal of Cleaner Production, 2021, 301, 126978.	9.3	27
21	Synergy of air pollutants and greenhouse gas emissions of Chinese industries: A critical assessment of energy models. Energy, 2015, 93, 2436-2450.	8.8	26
22	Integrated assessment of cleaning air policy in China: A case study for Beijing-Tianjin-Hebei region. Journal of Cleaner Production, 2021, 296, 126596.	9.3	25
23	Comparing Urban and Rural Household CO2 Emissions—Case from China's Four Megacities: Beijing, Tianjin, Shanghai, and Chongqing. Energies, 2018, 11, 1257.	3.1	24
24	Health and economic benefits of clean air policies in China: A case study for Beijing-Tianjin-Hebei region. Environmental Pollution, 2021, 285, 117525.	7.5	22
25	Estimating air pollution and health loss embodied in electricity transfers: An inter-provincial analysis in China. Science of the Total Environment, 2020, 702, 134705.	8.0	18
26	Co-benefits of Energy-Efficient Air Conditioners in the Residential Building Sector of China. Environmental Science & Technology, 2020, 54, 13217-13227.	10.0	14
27	Toward the 2-degree target: Evaluating co-benefits of road transportation in China. Journal of Transport and Health, 2019, 15, 100674.	2.2	9
28	Exploring pathways to deep de-carbonization and the associated environmental impact in China's ammonia industry. Environmental Research Letters, 2022, 17, 045029.	5.2	9
29	Saving energy in China's industry with a focus on electricity: a review of opportunities, potentials and environmental benefits. Energy Efficiency, 2021, 14, 1.	2.8	7
30	Reduced health burden and economic benefits of cleaner fuel usage from household energy consumption across rural and urban China. Environmental Research Letters, 2022, 17, 014039.	5.2	7
31	CLIMATE AND HEALTH BENEFITS OF PHASING OUT IRON & STEEL PRODUCTION CAPACITY IN CHINA: FINDINGS FROM THE IMED MODEL. Climate Change Economics, 2020, 11, 2041008.	5.0	5
32	å›åœ°è€Œå¼,的气候å•化å¥åº·å½±å"需è¦å›åœ°è€Œå¼,的应å⁻¹æŽªæ–½. Chinese Science Bulletin, 2	2027,,.	5
33	Energy Efficiency Improvement Opportunities in the Global Industrial Sector. , 2020, , 377-388.		3
34	Particle toxicity's role in air pollution—Response. Science, 2022, 375, 506-507.	12.6	2
35	A multi-criteria decision support model for adopting energy efficiency technologies in the iron and steel industry. Annals of Operations Research, 0, , 1.	4.1	1