Gerhard Walzl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8371838/publications.pdf

Version: 2024-02-01

246 papers 14,025 citations

61 h-index 30087 103 g-index

260 all docs

260 docs citations

times ranked

260

12945 citing authors

#	Article	IF	CITATIONS
1	A blood RNA signature for tuberculosis disease risk: a prospective cohort study. Lancet, The, 2016, 387, 2312-2322.	13.7	678
2	Immunological biomarkers of tuberculosis. Nature Reviews Immunology, 2011, 11, 343-354.	22.7	455
3	Biomarkers and diagnostics for tuberculosis: progress, needs, and translation into practice. Lancet, The, 2010, 375, 1920-1937.	13.7	404
4	Distinct, Specific IL-17- and IL-22-Producing CD4+ T Cell Subsets Contribute to the Human Anti-Mycobacterial Immune Response. Journal of Immunology, 2008, 180, 1962-1970.	0.8	378
5	Genital Inflammation and the Risk of HIV Acquisition in Women. Clinical Infectious Diseases, 2015, 61, 260-269.	5.8	354
6	Human gene expression profiles of susceptibility and resistance in tuberculosis. Genes and Immunity, 2011, 12, 15-22.	4.1	288
7	Tuberculosis: progress and advances in development of new drugs, treatment regimens, and host-directed therapies. Lancet Infectious Diseases, The, 2018, 18, e183-e198.	9.1	281
8	Persisting positron emission tomography lesion activity and Mycobacterium tuberculosis mRNA after tuberculosis cure. Nature Medicine, 2016, 22, 1094-1100.	30.7	247
9	Tuberculosis: advances and challenges in development of new diagnostics and biomarkers. Lancet Infectious Diseases, The, 2018, 18, e199-e210.	9.1	244
10	Distinct Phases of Blood Gene Expression Pattern Through Tuberculosis Treatment Reflect Modulation of the Humoral Immune Response. Journal of Infectious Diseases, 2013, 207, 18-29.	4.0	218
11	Four-Gene Pan-African Blood Signature Predicts Progression to Tuberculosis. American Journal of Respiratory and Critical Care Medicine, 2018, 197, 1198-1208.	5.6	217
12	Plasma cytokine levels during acute HIV-1 infection predict HIV disease progression. Aids, 2010, 24, 819-831.	2.2	195
13	Biomarkers of Inflammation, Immunosuppression and Stress Are Revealed by Metabolomic Profiling of Tuberculosis Patients. PLoS ONE, 2012, 7, e40221.	2.5	195
14	A multi-cohort study of the immune factors associated with M. tuberculosis infection outcomes. Nature, 2018, 560, 644-648.	27.8	184
15	Defining genital tract cytokine signatures of sexually transmitted infections and bacterial vaginosis in women at high risk of HIV infection: a cross-sectional study. Sexually Transmitted Infections, 2014, 90, 580-587.	1.9	173
16	Symptomatic Vaginal Discharge Is a Poor Predictor of Sexually Transmitted Infections and Genital Tract Inflammation in High-Risk Women in South Africa. Journal of Infectious Diseases, 2012, 206, 6-14.	4.0	171
17	Characterization of progressive HIV-associated tuberculosis using 2-deoxy-2-[18F]fluoro-D-glucose positron emission and computed tomography. Nature Medicine, 2016, 22, 1090-1093.	30.7	166
18	Host blood RNA signatures predict the outcome of tuberculosis treatment. Tuberculosis, 2017, 107, 48-58.	1.9	156

#	Article	IF	Citations
19	Host markers in Quantiferon supernatants differentiate active TB from latent TB infection: preliminary report. BMC Pulmonary Medicine, 2009, 9, 21.	2.0	150
20	Increased Frequency of Myeloid-derived Suppressor Cells during Active Tuberculosis and after Recent <i>Mycobacterium tuberculosis</i> Infection Suppresses T-Cell Function. American Journal of Respiratory and Critical Care Medicine, 2013, 188, 724-732.	5.6	149
21	Immunogenicity of Novel DosR Regulon-Encoded Candidate Antigens of <i>Mycobacterium tuberculosis</i> in Three High-Burden Populations in Africa. Vaccine Journal, 2009, 16, 1203-1212.	3.1	148
22	An Evaluation of Commercial Fluorescent Bead-Based Luminex Cytokine Assays. PLoS ONE, 2008, 3, e2535.	2.5	137
23	Beyond the IFN-Â horizon: biomarkers for immunodiagnosis of infection with Mycobacterium tuberculosis. European Respiratory Journal, 2014, 43, 1472-1486.	6.7	135
24	Overexpression of heat-shock proteins reduces survival of Mycobacterium tuberculosis in the chronic phase of infection. Nature Medicine, 2001, 7, 732-737.	30.7	134
25	Diagnostic performance of a seven-marker serum protein biosignature for the diagnosis of active TB disease in African primary healthcare clinic attendees with signs and symptoms suggestive of TB. Thorax, 2016, 71, 785-794.	5.6	134
26	Hypercytokinaemia accompanies HIV-tuberculosis immune reconstitution inflammatory syndrome. European Respiratory Journal, 2011, 37, 1248-1259.	6.7	130
27	Metabolite changes in blood predict the onset of tuberculosis. Nature Communications, 2018, 9, 5208.	12.8	129
28	Influenza Virus Lung Infection Protects from Respiratory Syncytial Virus–Induced Immunopathology. Journal of Experimental Medicine, 2000, 192, 1317-1326.	8.5	127
29	Optimization and Interpretation of Serial QuantiFERON Testing to Measure Acquisition of <i>Mycobacterium tuberculosis</i> Infection. American Journal of Respiratory and Critical Care Medicine, 2017, 196, 638-648.	5.6	124
30	Delaying BCG vaccination from birth to 10 weeks of age may result in an enhanced memory CD4 T cell response. Vaccine, 2009, 27, 5488-5495.	3.8	117
31	Corticosteroids in the Treatment of Tuberculous Pleurisy. Chest, 1996, 110, 333-338.	0.8	116
32	Immunosuppression during Active Tuberculosis Is Characterized by Decreased Interferonâ€Î³ Production and CD25 Expression with Elevated Forkhead Box P3, Transforming Growth Factor–β, and Interleukinâ€4 mRNA Levels. Journal of Infectious Diseases, 2007, 195, 870-878.	4.0	113
33	Safety and Immunogenicity of the Recombinant Mycobacterium bovis BCG Vaccine VPM1002 in HIV-Unexposed Newborn Infants in South Africa. Vaccine Journal, 2017, 24, .	3.1	112
34	Role of CCL5 (RANTES) in Viral Lung Disease. Journal of Virology, 2006, 80, 8151-8157.	3.4	106
35	Inhibition of T1/St2 during Respiratory Syncytial Virus Infection Prevents T Helper Cell Type 2 (Th2)- but Not Th1-Driven Immunopathology. Journal of Experimental Medicine, 2001, 193, 785-792.	8.5	104
36	A Critical Role for OX40 in T Cell–mediated Immunopathology during Lung Viral Infection. Journal of Experimental Medicine, 2003, 198, 1237-1242.	8.5	103

#	Article	IF	Citations
37	Direct comparison of the diagnostic yield of ultrasound-assisted Abrams and Tru-Cut needle biopsies for pleural tuberculosis. Thorax, 2010, 65, 857-862.	5.6	103
38	Differential cytokine secretion and early treatment response in patients with pulmonary tuberculosis. Clinical and Experimental Immunology, 2009, 156, 69-77.	2.6	97
39	Molecular Bacterial Load Assay, a Culture-Free Biomarker for Rapid and Accurate Quantification of Sputum Mycobacterium tuberculosis Bacillary Load during Treatment. Journal of Clinical Microbiology, 2011, 49, 3905-3911.	3.9	97
40	Assessment of Validity of a Blood-Based 3-Gene Signature Score for Progression and Diagnosis of Tuberculosis, Disease Severity, and Treatment Response. JAMA Network Open, 2018, 1, e183779.	5.9	96
41	Biomarker discovery in heterogeneous tissue samples -taking the in-silico deconfounding approach. BMC Bioinformatics, 2010, 11, 27.	2.6	95
42	Plasma cytokines and chemokines differentiate between active disease and non-active tuberculosis infection. Journal of Infection, 2013, 66, 357-365.	3.3	95
43	Mucosal Delivery of a Respiratory Syncytial Virus CTL Peptide with Enterotoxin-Based Adjuvants Elicits Protective, Immunopathogenic, and Immunoregulatory Antiviral CD8+ T Cell Responses. Journal of Immunology, 2001, 166, 1106-1113.	0.8	94
44	RISK6, a 6-gene transcriptomic signature of TB disease risk, diagnosis and treatment response. Scientific Reports, 2020, 10, 8629.	3.3	90
45	Acquired immunodeficiencies and tuberculosis: focus on <scp>HIV</scp> / <scp>AIDS</scp> and diabetes mellitus. Immunological Reviews, 2015, 264, 121-137.	6.0	87
46	S100A8/A9 regulates CD11b expression and neutrophil recruitment during chronic tuberculosis. Journal of Clinical Investigation, 2020, 130, 3098-3112.	8.2	85
47	Biomarker-guided tuberculosis preventive therapy (CORTIS): a randomised controlled trial. Lancet Infectious Diseases, The, 2021, 21, 354-365.	9.1	84
48	Effect of Standard Tuberculosis Treatment on Plasma Cytokine Levels in Patients with Active Pulmonary Tuberculosis. PLoS ONE, 2012, 7, e36886.	2.5	81
49	Identification of novel host biomarkers in plasma as candidates for the immunodiagnosis of tuberculosis disease and monitoring of tuberculosis treatment response. Oncotarget, 2016, 7, 57581-57592.	1.8	81
50	Vitamin D receptor gene polymorphisms and sputum conversion time in pulmonary tuberculosis patients. Tuberculosis, 2007, 87, 295-302.	1.9	80
51	Well-quantified tuberculosis exposure is a reliable surrogate measure of tuberculosis infection. International Journal of Tuberculosis and Lung Disease, 2012, 16, 1033-1039.	1.2	78
52	Decreased Expression of miR-21, miR-26a, miR-29a, and miR-142-3p in CD4+ T Cells and Peripheral Blood from Tuberculosis Patients. PLoS ONE, 2013, 8, e61609.	2.5	73
53	Discovery and validation of a prognostic proteomic signature for tuberculosis progression: A prospective cohort study. PLoS Medicine, 2019, 16, e1002781.	8.4	72
54	Highly discordant T cell responses in individuals with recent exposure to household tuberculosis. Thorax, 2009, 64, 840-846.	5.6	71

#	Article	IF	CITATIONS
55	Predominance of interleukin-22 over interleukin-17 at the site of disease in human tuberculosis. Tuberculosis, 2011, 91, 587-593.	1.9	71
56	Epigenetics and Proteomics Join Transcriptomics in the Quest for Tuberculosis Biomarkers. MBio, 2015, 6, e01187-15.	4.1	70
57	Immune markers measured before treatment predict outcome of intensive phase tuberculosis therapy. Clinical and Experimental Immunology, 2006, 146, 243-252.	2.6	68
58	PD-1 Expression on Mycobacterium tuberculosis-Specific CD4 T Cells Is Associated With Bacterial Load in Human Tuberculosis. Frontiers in Immunology, 2018, 9, 1995.	4.8	68
59	Genital Tract Inflammation During Early HIV-1 Infection Predicts Higher Plasma Viral Load Set Point in Women. Journal of Infectious Diseases, 2012, 205, 194-203.	4.0	67
60	Evaluation of Adapted Whole-Blood Interferon-γ Release Assays for the Diagnosis of Pleural Tuberculosis. Respiration, 2008, 76, 131-138.	2.6	66
61	Short-Term Reproducibility of a Commercial Interferon Gamma Release Assay. Vaccine Journal, 2009, 16, 1170-1175.	3.1	66
62	Differential gene expression of activating $Fc\hat{l}^3$ receptor classifies active tuberculosis regardless of human immunodeficiency virus status or ethnicity. Clinical Microbiology and Infection, 2014, 20, O230-O238.	6.0	65
63	Higher human CD4 T cell response to novel Mycobacterium tuberculosis latency associated antigens Rv2660 and Rv2659 in latent infection compared with tuberculosis disease. Vaccine, 2010, 29, 51-57.	3.8	64
64	A metabolic biosignature of early response to anti-tuberculosis treatment. BMC Infectious Diseases, 2014, 14, 53.	2.9	64
65	Potential of novel Mycobacterium tuberculosis infection phase-dependent antigens in the diagnosis of TB disease in a high burden setting. BMC Infectious Diseases, 2012, 12, 10.	2.9	63
66	Changes in leucocyte and lymphocyte subsets during tuberculosis treatment; prominence of CD3dimCD56+ natural killer T cells in fast treatment responders. Clinical and Experimental Immunology, 2006, 145, 252-260.	2.6	62
67	Immune parameters as markers of tuberculosis extent of disease and early prediction of anti-tuberculosis chemotherapy response. Journal of Infection, 2008, 56, 340-347.	3.3	62
68	The BCG replacement vaccine VPM1002: from drawing board to clinical trial. Expert Review of Vaccines, 2014, 13, 619-630.	4.4	62
69	The microbiome and tuberculosis: state of the art, potential applications, and defining the clinical research agenda. Lancet Respiratory Medicine, the, 2019, 7, 892-906.	10.7	62
70	Utility of Host Markers Detected in Quantiferon Supernatants for the Diagnosis of Tuberculosis in Children in a High-Burden Setting. PLoS ONE, 2013, 8, e64226.	2.5	61
71	Correlates for disease progression and prognosis during concurrent HIV/TB infection. International Journal of Infectious Diseases, 2007, 11, 289-299.	3.3	58
72	Biomarkers for TB treatment response: Challenges and future strategies. Journal of Infection, 2008, 57, 103-109.	3.3	57

#	Article	IF	Citations
73	Diabetes Mellitus Among Pulmonary Tuberculosis Patients From 4 Tuberculosis-endemic Countries: The TANDEM Study. Clinical Infectious Diseases, 2020, 70, 780-788.	5.8	57
74	Tuberculosis assays: past, present and future. Expert Review of Anti-Infective Therapy, 2011, 9, 457-469.	4.4	56
75	The effect of vitamin A and zinc supplementation on treatment outcomes in pulmonary tuberculosis: a randomized controlled trial. American Journal of Clinical Nutrition, 2011, 93, 93-100.	4.7	56
76	Host biomarkers detected in saliva show promise as markers for the diagnosis of pulmonary tuberculosis disease and monitoring of the response to tuberculosis treatment. Cytokine, 2016, 81, 50-56.	3.2	56
77	Profiling persistent tubercule bacilli from patient sputa during therapy predicts early drug efficacy. BMC Medicine, 2016, 14, 68.	5.5	55
78	High-throughput Identification of DNA-Encoded IgG Ligands that Distinguish Active and Latent <i>Mycobacterium tuberculosis</i> Infections. ACS Chemical Biology, 2017, 12, 234-243.	3.4	55
79	Differential cytokine/chemokines and KL-6 profiles in patients with different forms of tuberculosis. Cytokine, 2009, 47, 132-136.	3.2	54
80	Baseline Predictors of Sputum Culture Conversion in Pulmonary Tuberculosis: Importance of Cavities, Smoking, Time to Detection and W-Beijing Genotype. PLoS ONE, 2012, 7, e29588.	2.5	52
81	Host Immune Response to Tuberculous Meningitis. Clinical Infectious Diseases, 2015, 60, 177-187.	5.8	52
82	Potential of Host Markers Produced by Infection Phase-Dependent Antigen-Stimulated Cells for the Diagnosis of Tuberculosis in a Highly Endemic Area. PLoS ONE, 2012, 7, e38501.	2.5	50
83	Multi-center evaluation of a user-friendly lateral flow assay to determine IP-10 and CCL4 levels in blood of TB and non-TB cases in Africa. Clinical Biochemistry, 2016, 49, 22-31.	1.9	49
84	Analysis of Host Responses to Mycobacterium tuberculosis Antigens in a Multi-Site Study of Subjects with Different TB and HIV Infection States in Sub-Saharan Africa. PLoS ONE, 2013, 8, e74080.	2.5	48
85	The gut microbiome in tuberculosis susceptibility and treatment response: guilty or not guilty?. Cellular and Molecular Life Sciences, 2020, 77, 1497-1509.	5.4	48
86	Differential Expression of Host Biomarkers in Saliva and Serum Samples from Individuals with Suspected Pulmonary Tuberculosis. Mediators of Inflammation, 2013, 2013, 1-10.	3.0	47
87	Safety and efficacy of BCG re-vaccination in relation to COVID-19 morbidity in healthcare workers: A double-blind, randomised, controlled, phase 3 trial. EClinicalMedicine, 2022, 48, 101414.	7.1	47
88	OX40 Ligation on Activated T Cells Enhances the Control of <i>Cryptococcus neoformans </i> Reduces Pulmonary Eosinophilia. Journal of Immunology, 2003, 170, 6125-6132.	0.8	46
89	Optimizing the Detection of Recent Tuberculosis Infection in Children in a High Tuberculosis–HIV Burden Setting. American Journal of Respiratory and Critical Care Medicine, 2015, 191, 820-830.	5.6	46
90	Detection of Tuberculosis Recurrence, Diagnosis and Treatment Response by a Blood Transcriptomic Risk Signature in HIV-Infected Persons on Antiretroviral Therapy. Frontiers in Microbiology, 2019, 10, 1441.	3.5	46

#	Article	lF	Citations
91	Safety and immunogenicity of the adjunct therapeutic vaccine ID93â€^+â€^GLA-SE in adults who have completed treatment for tuberculosis: a randomised, double-blind, placebo-controlled, phase 2a trial. Lancet Respiratory Medicine,the, 2021, 9, 373-386.	10.7	46
92	Diagnostic Accuracy of the Cepheid 3-gene Host Response Fingerstick Blood Test in a Prospective, Multi-site Study: Interim Results. Clinical Infectious Diseases, 2022, 74, 2136-2141.	5. 8	46
93	Serologic diagnosis of tuberculosis by combining Ig classes against selected mycobacterial targets. Journal of Infection, 2014, 69, 581-589.	3.3	45
94	Higher SARS-CoV-2 seroprevalence in workers with lower socioeconomic status in Cape Town, South Africa. PLoS ONE, 2021, 16, e0247852.	2.5	45
95	Diagnostic Potential of Novel Salivary Host Biomarkers as Candidates for the Immunological Diagnosis of Tuberculosis Disease and Monitoring of Tuberculosis Treatment Response. PLoS ONE, 2016, 11, e0160546.	2.5	45
96	Suppressor of cytokine signaling-3 is affected in T-cells from tuberculosisTB patients. Clinical Microbiology and Infection, 2011, 17, 1323-1331.	6.0	44
97	Detecting Tuberculosis Infection in HIV-infected Children. Pediatric Infectious Disease Journal, 2013, 32, e111-e118.	2.0	44
98	Africa-wide evaluation of host biomarkers in QuantiFERON supernatants for the diagnosis of pulmonary tuberculosis. Scientific Reports, 2018, 8, 2675.	3.3	44
99	Complement Component C1q as Serum Biomarker to Detect Active Tuberculosis. Frontiers in Immunology, 2018, 9, 2427.	4.8	43
100	The influence of different helminth infection phenotypes on immune responses against HIV in co-infected adults in South Africa. BMC Infectious Diseases, 2011, 11, 273.	2.9	42
101	Exploring Alternative Biomaterials for Diagnosis of Pulmonary Tuberculosis in HIV-Negative Patients by Use of the GeneXpert MTB/RIF Assay. Journal of Clinical Microbiology, 2013, 51, 4161-4166.	3.9	42
102	Distinct Cytokine Patterns in Semen Influence Local HIV Shedding and HIV Target Cell Activation. Journal of Infectious Diseases, 2014, 209, 1174-1184.	4.0	42
103	A Serum Circulating miRNA Signature for Short-Term Risk of Progression to Active Tuberculosis Among Household Contacts. Frontiers in Immunology, 2018, 9, 661.	4.8	42
104	Acute helminth infection enhances early macrophage mediated control of mycobacterial infection. Mucosal Immunology, 2013, 6, 931-941.	6.0	41
105	Immunometabolic Signatures Predict Risk of Progression to Active Tuberculosis and Disease Outcome. Frontiers in Immunology, 2019, 10, 527.	4.8	40
106	Challenges and perspectives for improved management of HIV/Mycobacterium tuberculosis co-infection. European Respiratory Journal, 2010, 36, 1242-1247.	6.7	39
107	Guidance for Studies Evaluating the Accuracy of Biomarker-Based Nonsputum Tests to Diagnose Tuberculosis. Journal of Infectious Diseases, 2019, 220, S108-S115.	4.0	38
108	Pleural Tuberculosis in Patients with Early HIV Infection Is Associated with Increased TNF-Alpha Expression and Necrosis in Granulomas. PLoS ONE, 2009, 4, e4228.	2.5	37

#	Article	IF	Citations
109	Patients with Concurrent Tuberculosis and Diabetes Have a Pro-Atherogenic Plasma Lipid Profile. EBioMedicine, 2018, 32, 192-200.	6.1	36
110	Differential Expression of Interleukin-4 (IL-4) and IL-4δ2 mRNA, but Not Transforming Growth Factor Beta (TGF-β), TGF-βRII, Foxp3, Gamma Interferon, T-bet, or GATA-3 mRNA, in Patients with Fast and Slow Responses to Antituberculosis Treatment. Vaccine Journal, 2008, 15, 1165-1170.	3.1	35
111	Bacterial Loads Measured by the Xpert MTB/RIF Assay as Markers of Culture Conversion and Bacteriological Cure in Pulmonary TB. PLoS ONE, 2016, 11, e0160062.	2.5	35
112	BDNF Val66Met and DRD2 Taq1A polymorphisms interact to influence PTSD symptom severity: A preliminary investigation in a South African population. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2013, 40, 273-280.	4.8	34
113	Excessive Cytolytic Responses Predict Tuberculosis Relapse After Apparently Successful Treatment. Journal of Infectious Diseases, 2016, 213, 485-495.	4.0	34
114	Validation of a host blood transcriptomic biomarker for pulmonary tuberculosis in people living with HIV: a prospective diagnostic and prognostic accuracy study. The Lancet Global Health, 2021, 9, e841-e853.	6.3	34
115	Detection and treatment of subclinical tuberculosis. Tuberculosis, 2012, 92, 447-452.	1.9	33
116	Use of lateral flow assays to determine IP-10 and CCL4 levels in pleural effusions and whole blood for TB diagnosis. Tuberculosis, 2016, 96, 31-36.	1.9	33
117	Clinical Immunology and Multiplex Biomarkers of Human Tuberculosis. Cold Spring Harbor Perspectives in Medicine, 2015, 5, a018515-a018515.	6.2	32
118	Safety and Immunogenicity of Newborn MVA85A Vaccination and Selective, Delayed Bacille Calmette-Guerin for Infants of Human Immunodeficiency Virus-Infected Mothers: A Phase 2 Randomized, Controlled Trial. Clinical Infectious Diseases, 2018, 66, 554-563.	5.8	32
119	Human Monocytic Suppressive Cells Promote Replication of Mycobacterium tuberculosis and Alter Stability of in vitro Generated Granulomas. Frontiers in Immunology, 2018, 9, 2417.	4.8	32
120	Oxidized low-density lipoprotein (oxLDL) supports Mycobacterium tuberculosis survival in macrophages by inducing lysosomal dysfunction. PLoS Pathogens, 2019, 15, e1007724.	4.7	32
121	Safety and immunogenicity of VPM1002 versus BCG in South African newborn babies: a randomised, phase 2 non-inferiority double-blind controlled trial. Lancet Infectious Diseases, The, 2022, 22, 1472-1483.	9.1	32
122	Host Cytokine Responses Induced after Overnight Stimulation with Novel M. tuberculosis Infection Phase-Dependent Antigens Show Promise as Diagnostic Candidates for TB Disease. PLoS ONE, 2014, 9, e102584.	2.5	30
123	Impact of HIV co-infection on plasma level of cytokines and chemokines of pulmonary tuberculosis patients. BMC Infectious Diseases, 2014, 14, 125.	2.9	30
124	Combination of gene expression patterns in whole blood discriminate between tuberculosis infection states. BMC Infectious Diseases, 2014, 14, 257.	2.9	30
125	Medroxyprogesterone Acetate Alters Mycobacterium Bovis BCG-Induced Cytokine Production in Peripheral Blood Mononuclear Cells of Contraceptive Users. PLoS ONE, 2011, 6, e24639.	2.5	30
126	Tuberculous Meningitis: Pathogenesis, Immune Responses, Diagnostic Challenges, and the Potential of Biomarker-Based Approaches. Journal of Clinical Microbiology, 2021, 59, .	3.9	29

#	Article	IF	Citations
127	Effect of Ascaris Lumbricoides specific IgE on tuberculin skin test responses in children in a high-burden setting: a cross-sectional community-based study. BMC Infectious Diseases, 2012, 12, 211.	2.9	28
128	The Contraceptive Depot Medroxyprogesterone Acetate Impairs Mycobacterial Control and Inhibits Cytokine Secretion in Mice Infected with Mycobacterium tuberculosis. Infection and Immunity, 2013, 81, 1234-1244.	2.2	28
129	Evaluation of cytokine responses against novel Mtb antigens as diagnostic markers for TB disease. Journal of Infection, 2016, 73, 219-230.	3.3	28
130	Cardiovascular risk and endothelial function in people living with HIV/AIDS: design of the multi-site, longitudinal EndoAfrica study in the Western Cape Province of South Africa. BMC Infectious Diseases, 2017, 17, 41.	2.9	28
131	Considerations for biomarker-targeted intervention strategies for tuberculosis disease prevention. Tuberculosis, 2018, 109, 61-68.	1.9	28
132	Changes in the kinetics of intracellular IFN- \hat{l}^3 production in TB patients during treatment. Clinical Immunology, 2007, 124, 336-344.	3.2	27
133	A Broad Profile of Co-Dominant Epitopes Shapes the Peripheral Mycobacterium tuberculosis Specific CD8+ T-Cell Immune Response in South African Patients with Active Tuberculosis. PLoS ONE, 2013, 8, e58309.	2.5	27
134	Sputum is a surrogate for bronchoalveolar lavage for monitoring Mycobacterium tuberculosis transcriptional profiles in TB patients. Tuberculosis, 2016, 100, 89-94.	1.9	27
135	Phenotypically resembling myeloid derived suppressor cells are increased in children with HIV and exposed/infected with <i>Mycobacterium tuberculosis</i> . European Journal of Immunology, 2017, 47, 107-118.	2.9	27
136	Quantitative 18F-FDG PET-CT scan characteristics correlate with tuberculosis treatment response. EJNMMI Research, 2020, 10, 8.	2.5	27
137	Heparin-Binding Hemagglutinin Induces IFN-γ ⁺ Multifunctional CD4 ⁺ T Cells during Latent but Not Active Tuberculosis Disease. Vaccine Journal, 2012, 19, 746-751.	3.1	26
138	A Blueprint to Address Research Gaps in the Development of Biomarkers for Pediatric Tuberculosis: Table 1 Clinical Infectious Diseases, 2015, 61, S164-S172.	5.8	26
139	Impact of Intermediate Hyperglycemia and Diabetes on Immune Dysfunction in Tuberculosis. Clinical Infectious Diseases, 2021, 72, 69-78.	5.8	26
140	Therapies for tuberculosis and AIDS: myeloid-derived suppressor cells in focus. Journal of Clinical Investigation, 2020, 130, 2789-2799.	8.2	26
141	Phenotypic analysis of peripheral B cell populations during Mycobacterium tuberculosis infection and disease. Journal of Inflammation, 2016, 13, 23.	3.4	25
142	GPR183 Regulates Interferons, Autophagy, and Bacterial Growth During Mycobacterium tuberculosis Infection and Is Associated With TB Disease Severity. Frontiers in Immunology, 2020, 11, 601534.	4.8	25
143	Fourteen-day PET/CT imaging to monitor drug combination activity in treated individuals with tuberculosis. Science Translational Medicine, 2021, 13, .	12.4	25
144	Prior Exposure to Live Mycobacterium bovis BCG Decreases Cryptococcus neoformans -Induced Lung Eosinophilia in a Gamma Interferon-Dependent Manner. Infection and Immunity, 2003, 71, 3384-3391.	2.2	24

#	Article	IF	Citations
145	Distinct serum biosignatures are associated with different tuberculosis treatment outcomes. Tuberculosis, 2019, 118, 101859.	1.9	24
146	Prospective evaluation of host biomarkers other than interferon gamma in QuantiFERON Plus supernatants as candidates for the diagnosis of tuberculosis in symptomatic individuals. Journal of Infection, 2019, 79, 228-235.	3.3	24
147	Potential of Host Serum Protein Biomarkers in the Diagnosis of Tuberculous Meningitis in Children. Frontiers in Pediatrics, 2019, 7, 376.	1.9	24
148	Application of Cerebrospinal Fluid Host Protein Biosignatures in the Diagnosis of Tuberculous Meningitis in Children from a High Burden Setting. Mediators of Inflammation, 2019, 2019, 1-11.	3.0	24
149	The Functional Response of B Cells to Antigenic Stimulation: A Preliminary Report of Latent Tuberculosis. PLoS ONE, 2016, 11, e0152710.	2.5	24
150	Urinary metabolite markers characterizing tuberculosis treatment failure. Metabolomics, 2017, 13, 1.	3.0	23
151	Heat-killed Mycobacterium tuberculosis prime-boost vaccination induces myeloid-derived suppressor cells with spleen dendritic cell–killing capability. JCI Insight, 2019, 4, .	5.0	23
152	Immunogenicity of BCG in HIV-exposed and non-exposed infants following routine birth or delayed vaccination. International Journal of Tuberculosis and Lung Disease, 2015, 19, 454-462.	1.2	22
153	Translational Potential of Therapeutics Targeting Regulatory Myeloid Cells in Tuberculosis. Frontiers in Cellular and Infection Microbiology, 2018, 8, 332.	3.9	22
154	An observational study identifying highly tuberculosis-exposed, HIV-1-positive but persistently TB, tuberculin and IGRA negative persons with M. tuberculosis specific antibodies in Cape Town, South Africa. EBioMedicine, 2020, 61, 103053.	6.1	22
155	Validation and Optimization of Host Immunological Bio-Signatures for a Point-of-Care Test for TB Disease. Frontiers in Immunology, 2021, 12, 607827.	4.8	22
156	Using biomarkers to predict TB treatment duration (Predict TB): a prospective, randomized, noninferiority, treatment shortening clinical trial. Gates Open Research, 2017, 1, 9.	1.1	22
157	Detection of a combination of serum IgG and IgA antibodies against selected mycobacterial targets provides promising diagnostic signatures for active TB. Oncotarget, 2017, 8, 37525-37537.	1.8	21
158	Suitability of saliva for Tuberculosis diagnosis: comparing with serum. BMC Infectious Diseases, 2017, 17, 600.	2.9	21
159	Investigating Non-sterilizing Cure in TB Patients at the End of Successful Anti-TB Therapy. Frontiers in Cellular and Infection Microbiology, 2020, 10, 443.	3.9	21
160	A Plasma 5-Marker Host Biosignature Identifies Tuberculosis in High and Low Endemic Countries. Frontiers in Immunology, 2021, 12, 608846.	4.8	21
161	Evaluation of Host Serum Protein Biomarkers of Tuberculosis in sub-Saharan Africa. Frontiers in Immunology, 2021, 12, 639174.	4.8	21
162	Successful TB treatment induces B-cells expressing FASL and IL5RA mRNA. Oncotarget, 2017, 8, 2037-2043.	1.8	21

#	Article	IF	Citations
163	Rapid diagnosis of tuberculosis using ex vivo host biomarkers in sputum. European Respiratory Journal, 2014, 44, 254-257.	6.7	20
164	Frequency of Mycobacterium tuberculosis-specific CD8+ T-cells in the course of anti-tuberculosis treatment. International Journal of Infectious Diseases, 2015, 32, 23-29.	3.3	20
165	Evaluation of a radiological severity score to predict treatment outcome in adults with pulmonary tuberculosis. International Journal of Tuberculosis and Lung Disease, 2015, 19, 1354-1360.	1.2	20
166	Moving toward Tuberculosis Elimination. Critical Issues for Research in Diagnostics and Therapeutics for Tuberculosis Infection. American Journal of Respiratory and Critical Care Medicine, 2019, 199, 564-571.	5.6	20
167	Antimicrobial resistance in tuberculosis: an international perspective. Expert Review of Anti-Infective Therapy, 2006, 4, 759-766.	4.4	19
168	Serodiagnostic markers for the prediction of the outcome of intensive phase tuberculosis therapy. Tuberculosis, 2013, 93, 239-245.	1.9	19
169	Modern lineages of <i>Mycobacterium tuberculosis</i> in Addis Ababa, Ethiopia: implications for the tuberculosis control programe. African Health Sciences, 2013, 12, 339-44.	0.7	19
170	Accuracy of diabetes screening methods used for people with tuberculosis, Indonesia, Peru, Romania, South Africa. Bulletin of the World Health Organization, 2018, 96, 738-749.	3.3	19
171	Expression and production of the SERPING1-encoded endogenous complement regulator C1-inhibitor in multiple cohorts of tuberculosis patients. Molecular Immunology, 2020, 120, 187-195.	2.2	19
172	T cell-tropic HIV efficiently infects alveolar macrophages through contact with infected CD4+ T cells. Scientific Reports, 2021, 11, 3890.	3.3	19
173	A Subgroup of LatentlyMycobacterium tuberculosisInfected Individuals Is Characterized by Consistently Elevated IgA Responses to Several Mycobacterial Antigens. Mediators of Inflammation, 2015, 2015, 1-10.	3.0	18
174	Caveolin-1 Controls Vesicular TLR2 Expression, p38 Signaling and T Cell Suppression in BCG Infected Murine Monocytic Myeloid-Derived Suppressor Cells. Frontiers in Immunology, 2019, 10, 2826.	4.8	18
175	Immune Profiling Enables Stratification of Patients With Active Tuberculosis Disease or <i>Mycobacteriu m tuberculosis</i> Infection. Clinical Infectious Diseases, 2021, 73, e3398-e3408.	5.8	18
176	Myeloid-Derived Suppressor Cells as Target of Phosphodiesterase-5 Inhibitors in Host-Directed Therapeutics for Tuberculosis. Frontiers in Immunology, 2020, 11, 451.	4.8	18
177	Recall of intestinal helminthiasis by HIV-infected South Africans and avoidance of possible misinterpretation of egg excretion in worm/HIV co-infection analyses. BMC Infectious Diseases, 2006, 6, 88.	2.9	17
178	Time-Dependent Changes in Urinary Metabolome Before and After Intensive Phase Tuberculosis Therapy: A Pharmacometabolomics Study. OMICS A Journal of Integrative Biology, 2019, 23, 560-572.	2.0	17
179	Mycobacterium tuberculosis and myeloid-derived suppressor cells: Insights into caveolin rich lipid rafts. EBioMedicine, 2020, 53, 102670.	6.1	17
180	Bifunctional T-Cell-Derived Cytokines for the Diagnosis of Tuberculosis and Treatment Monitoring. Respiration, 2014, 88, 251-261.	2.6	16

#	Article	IF	CITATIONS
181	B cells as multi-functional players during Mycobacterium tuberculosis infection and disease. Tuberculosis, 2016, 97, 118-125.	1.9	16
182	Bâ€cells with a FasL expressing regulatory phenotype are induced following successful antiâ€tuberculosis treatment. Immunity, Inflammation and Disease, 2017, 5, 57-67.	2.7	16
183	Predicting tuberculosis treatment outcome using metabolomics. Biomarkers in Medicine, 2017, 11, 1057-1067.	1.4	16
184	A semi-automatic technique to quantify complex tuberculous lung lesions on 18F-fluorodeoxyglucose positron emission tomography/computerised tomography images. EJNMMI Research, 2018, 8, 55.	2.5	16
185	Diabetes screen during tuberculosis contact investigations highlights opportunity for new diabetes diagnosis and reveals metabolic differences between ethnic groups. Tuberculosis, 2018, 113, 10-18.	1.9	16
186	Host urine immunological biomarkers as potential candidates for the diagnosis of tuberculosis. International Journal of Infectious Diseases, 2020, 99, 473-481.	3.3	16
187	Radiological and functional evidence of the bronchial spread of tuberculosis: an observational analysis. Lancet Microbe, The, 2021, 2, e518-e526.	7.3	16
188	Disease characteristics and treatment of patients with diabetes mellitus attending government health services in Indonesia, Peru, Romania and South Africa. Tropical Medicine and International Health, 2018, 23, 1118-1128.	2.3	15
189	Longitudinal Dynamics of a Blood Transcriptomic Signature of Tuberculosis. American Journal of Respiratory and Critical Care Medicine, 2021, 204, 1463-1472.	5.6	15
190	Prospective multicentre head-to-head validation of host blood transcriptomic biomarkers for pulmonary tuberculosis by real-time PCR. Communications Medicine, 2022, 2, .	4.2	15
191	Mycobacterium bovis BCG infection severely delays Trichuris muris expulsion and co-infection suppresses immune responsiveness to both pathogens. BMC Microbiology, 2014, 14, 9.	3.3	13
192	The Effect of Deworming on Tests of Tuberculosis Infection in Children With Recent Tuberculosis Exposure. Pediatric Infectious Disease Journal, 2016, 35, 622-627.	2.0	13
193	Monocytic myeloid-derived suppressor cells reflect tuberculosis severity and are influenced by cyclooxygenase-2 inhibitors. Journal of Leukocyte Biology, 2021, 110, 177-186.	3.3	13
194	Helminth-M. Tb Co-Infection. Advances in Experimental Medicine and Biology, 2014, 828, 49-74.	1.6	13
195	Development of a diagnostic gene expression assay for tuberculosis and its use under field conditions in African buffaloes (Syncerus caffer). Veterinary Immunology and Immunopathology, 2012, 148, 337-342.	1.2	12
196	Diagnostic Accuracy of Early Secretory Antigenic Target-6–Free Interferon-gamma Release Assay Compared to QuantiFERON-TB Gold In-tube. Clinical Infectious Diseases, 2019, 69, 1724-1730.	5.8	12
197	Visualizing the dynamics of tuberculosis pathology using molecular imaging. Journal of Clinical Investigation, 2021, 131, .	8.2	12
198	Plasma Level of IL-4 Differs in Patients Infected with Different Modern Lineages of <i>M. tuberculosis </i> . Journal of Tropical Medicine, 2012, 2012, 1-6.	1.7	11

#	Article	IF	Citations
199	Serum cytokine levels associated with myocardial injury in systemic lupus erythematosus. Rheumatology, 2021, 60, 2010-2021.	1.9	11
200	Targeting of myeloid-derived suppressor cells by all-trans retinoic acid as host-directed therapy for human tuberculosis. Cellular Immunology, 2021, 364, 104359.	3.0	11
201	TB Epidemiology and Human Genetics. Novartis Foundation Symposium, 0, , 17-41.	1.1	11
202	TB: a partnership for the benefit of research and community. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2005, 99, 15-19.	1.8	10
203	High levels of intracellular IL-4 are expressed in circulating apoptotic T cells in patients with tuberculosis and in community controls. Tuberculosis, 2008, 88, 21-30.	1.9	9
204	QuantiFERON-TB performance enhanced by novel Mycobacterium tuberculosis-specific antigens. European Respiratory Journal, 2016, 47, 660-664.	6.7	9
205	Elucidation of a Human Urine Metabolite as a Seryl-Leucine Glycopeptide and as a Biomarker of Effective Anti-Tuberculosis Therapy. ACS Infectious Diseases, 2019, 5, 353-364.	3.8	9
206	Proliferative capacity and cytokine production by cells of HIV-infected and uninfected adults with different helminth infection phenotypes in South Africa. BMC Infectious Diseases, 2014, 14, 499.	2.9	8
207	Candidate Biomarkers to Distinguish Spinal Tuberculosis From Mechanical Back Pain in a Tuberculosis Endemic Setting. Frontiers in Immunology, 2021, 12, 768040.	4.8	8
208	Changes in Host Immune–Endocrine Relationships during Tuberculosis Treatment in Patients with Cured and Failed Treatment Outcomes. Frontiers in Immunology, 2017, 8, 690.	4.8	7
209	Inflammatory Determinants of Differential Tuberculosis Risk in Pre-Adolescent Children and Young Adults. Frontiers in Immunology, 2021, 12, 639965.	4.8	7
210	Evaluation of autophagy mediators in myeloid-derived suppressor cells during human tuberculosis. Cellular Immunology, 2021, 369, 104426.	3.0	7
211	The potential of imaging tools as correlates of infection and disease for new TB vaccine development. Seminars in Immunology, 2018, 39, 73-80.	5.6	7
212	Clinical predictors of pulmonary tuberculosis among South African adults with HIV. EClinicalMedicine, 2022, 45, 101328.	7.1	7
213	Sputum lipoarabinomannan (LAM) as a biomarker to determine sputum mycobacterial load: exploratory and model-based analyses of integrated data from four cohorts. BMC Infectious Diseases, 2022, 22, 327.	2.9	7
214	The level of the endoplasmic reticulum stress chaperone protein, binding immunoglobulin protein (BiP), decreases following successful tuberculosis treatment. International Journal of Infectious Diseases, 2019, 81, 198-202.	3.3	6
215	The Peripheral Blood Transcriptome Is Correlated With PET Measures of Lung Inflammation During Successful Tuberculosis Treatment. Frontiers in Immunology, 2020, 11, 596173.	4.8	6
216	Dysregulation of the Immune Environment in the Airways During HIV Infection. Frontiers in Immunology, 2021, 12, 707355.	4.8	6

#	Article	IF	Citations
217	Concurrent evaluation of cytokines improves the accuracy of antibodies against Mycobacterium tuberculosis antigens in the diagnosis of active tuberculosis. Tuberculosis, 2022, 133, 102169.	1.9	6
218	Screening diabetes mellitus patients for pulmonary tuberculosis: a multisite study in Indonesia, Peru, Romania and South Africa. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2021, 115, 634-643.	1.8	5
219	Identification of novel salivary candidate protein biomarkers for tuberculosis diagnosis: A preliminary biomarker discovery study. Tuberculosis, 2021, 130, 102118.	1.9	5
220	Transcriptional profiles predict treatment outcome in patients with tuberculosis and diabetes at diagnosis and at two weeks after initiation of anti-tuberculosis treatment. EBioMedicine, 2022, 82, 104173.	6.1	5
221	Evaluation of Potential Antigen-specific Host Biomarkers in QuantiFERON Supernatants as Candidates for the Diagnosis of Ocular Tuberculosis. Ocular Immunology and Inflammation, 2021, 29, 1480-1488.	1.8	4
222	Identification of Potential Biomarkers in Peripheral Blood Supernatants of South African Patients with Syphilitic and Herpetic Uveitis. Ocular Immunology and Inflammation, 2021, 29, 299-307.	1.8	4
223	Serum and cerebrospinal fluid host proteins indicate stroke in children with tuberculous meningitis. PLoS ONE, 2021, 16, e0250944.	2.5	4
224	Chronological Metabolic Response to Intensive Phase TB Therapy in Patients with Cured and Failed Treatment Outcomes. ACS Infectious Diseases, 2021, 7, 1859-1869.	3.8	4
225	Mycobacterium tuberculosis-stimulated whole blood culture to detect host biosignatures for tuberculosis treatment response. Tuberculosis, 2021, 128, 102082.	1.9	4
226	CCL1 and IL-2Ra differentiate Tuberculosis disease from latent infection Irrespective of HIV infection in low TB burden countries. Journal of Infection, 2021, 83, 433-443.	3.3	4
227	Targeted Gene Expression Profiling of Human Myeloid Cells From Blood and Lung Compartments of Patients With Tuberculosis and Other Lung Diseases. Frontiers in Immunology, 2022, 13, 839747.	4.8	4
228	Immunometabolism of Myeloid-Derived Suppressor Cells: Implications for Mycobacterium tuberculosis Infection and Insights from Tumor Biology. International Journal of Molecular Sciences, 2022, 23, 3512.	4.1	3
229	Evaluation of a transcriptomic signature of tuberculosis risk in combination with an interferon gamma release assay: A diagnostic test accuracy study. EClinicalMedicine, 2022, 47, 101396.	7.1	3
230	Biomarkers to predict FDG PET/CT activity after the standard duration of treatment for spinal tuberculosis: An exploratory study. Tuberculosis, 2021, 129, 102107.	1.9	2
231	The effect of host factors on discriminatory performance of a transcriptomic signature of tuberculosis risk. EBioMedicine, 2022, 77, 103886.	6.1	2
232	Evaluation of host biomarkers for monitoring treatment response in spinal tuberculosis: A 12-month cohort study. Cytokine, 2022, 157, 155944.	3.2	2
233	Reply to Davies et al Journal of Infectious Diseases, 2007, 196, 649-650.	4.0	1
234	Diagnostic Challenge of Tuberculosis Heterogeneity. Seminars in Respiratory and Critical Care Medicine, 2018, 39, 286-296.	2.1	1

#	Article	IF	CITATIONS
235	Biosignatures: The answer to Tuberculosis diagnosis in children?. EBioMedicine, 2020, 60, 102977.	6.1	1
236	Has the bubble burst for transcriptomics in tuberculosis diagnosis?. Lancet Infectious Diseases, The, 2021, 21, 301-302.	9.1	1
237	Inhaled particulate matter affects immune responsiveness of human lung phagocytes to mycobacteria. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2021, 321, L566-L575.	2.9	1
238	Transmission Of Tuberculosis Among illicit drug use Linkages (TOTAL): A cross-sectional observational study protocol using respondent driven sampling. PLoS ONE, 2022, 17, e0262440.	2.5	1
239	Validation of host cerebrospinal fluid protein biomarkers for early diagnosis of tuberculous meningitis in children: a replication and new biosignature discovery study. Biomarkers, 2022, 27, 549-561.	1.9	1
240	Localization of EccA3 at the growing pole in Mycobacterium smegmatis. BMC Microbiology, 2022, 22, 140.	3.3	1
241	POLICY-DRIVEN INTERVENTIONS: TUBERCULOSIS. BMJ Global Health, 2017, 2, A4.1-A4.	4.7	0
242	Re. Pediatric Infectious Disease Journal, 2017, 36, 241-242.	2.0	0
243	Antibody and Host Inflammatory Biomarker Combinations as Diagnostic Tools for TB Disease. American Journal of Clinical Pathology, 2018, 150, S126-S127.	0.7	0
244	Modulation of Immune Responses to Virus Infection in the Lung. , 2003, , .		0
245	Cytokines in Pulmonary Tuberculosis. , 2011, , 123-137.		0
246	Predicting TB treatment outcomes using baseline risk and treatment response markers: developing the PredictTB early treatment completion criteria. Gates Open Research, 0, 4, 157.	1.1	0