Erica Larschan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8370554/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Comprehensive analysis of the chromatin landscape in Drosophila melanogaster. Nature, 2011, 471, 480-485.	27.8	781
2	A Sequence Motif within Chromatin Entry Sites Directs MSL Establishment on the Drosophila X Chromosome. Cell, 2008, 134, 599-609.	28.9	256
3	MSL Complex Is Attracted to Genes Marked by H3K36 Trimethylation Using a Sequence-Independent Mechanism. Molecular Cell, 2007, 28, 121-133.	9.7	195
4	MNase titration reveals differences between nucleosome occupancy and chromatin accessibility. Nature Communications, 2016, 7, 11485.	12.8	185
5	High-resolution ChIP-chip analysis reveals that the Drosophila MSL complex selectively identifies active genes on the male X chromosome. Genes and Development, 2006, 20, 848-857.	5.9	184
6	X chromosome dosage compensation via enhanced transcriptional elongation in Drosophila. Nature, 2011, 471, 115-118.	27.8	169
7	Drosophila MSL complex globally acetylates H4K16 on the male X chromosome for dosage compensation. Nature Structural and Molecular Biology, 2009, 16, 825-832.	8.2	116
8	The CLAMP protein links the MSL complex to the X chromosome during <i>Drosophila</i> dosage compensation. Genes and Development, 2013, 27, 1551-1556.	5.9	106
9	The Saccharomyces cerevisiae Srb8-Srb11 Complex Functions with the SAGA Complex during Gal4-Activated Transcription. Molecular and Cellular Biology, 2005, 25, 114-123.	2.3	68
10	Identification of Chromatin-Associated Regulators of MSL Complex Targeting in Drosophila Dosage Compensation. PLoS Genetics, 2012, 8, e1002830.	3.5	56
11	Sequence-Specific Targeting of Dosage Compensation in Drosophila Favors an Active Chromatin Context. PLoS Genetics, 2012, 8, e1002646.	3.5	48
12	Expansion of GA Dinucleotide Repeats Increases the Density of CLAMP Binding Sites on the X-Chromosome to Promote Drosophila Dosage Compensation. PLoS Genetics, 2016, 12, e1006120.	3.5	48
13	Evidence that the Elongation Factor TFIIS Plays a Role in Transcription Initiation at GAL1 in Saccharomyces cerevisiae. Molecular and Cellular Biology, 2005, 25, 2650-2659.	2.3	47
14	CLAMP and Zelda function together to promote Drosophila zygotic genome activation. ELife, 2021, 10, .	6.0	40
15	A Genome-Wide Screen Identifies Genes That Affect Somatic Homolog Pairing in <i>Drosophila</i> . G3: Genes, Genomes, Genetics, 2012, 2, 731-740.	1.8	39
16	Differential Occupancy of Two GA-Binding Proteins Promotes Targeting of the Drosophila Dosage Compensation Complex to the Male X Chromosome. Cell Reports, 2018, 22, 3227-3239.	6.4	39
17	Sexâ€specific aging in animals: Perspective and future directions. Aging Cell, 2022, 21, e13542.	6.7	36
18	The essential Drosophila CLAMP protein differentially regulates non-coding roX RNAs in male and females. Chromosome Research, 2017, 25, 101-113.	2.2	32

Erica Larschan

#	Article	IF	CITATIONS
19	Enhanced chromatin accessibility of the dosage compensated Drosophila male X-chromosome requires the CLAMP zinc finger protein. PLoS ONE, 2017, 12, e0186855.	2.5	29
20	<i>Drosophila</i> Dosage Compensation Loci Associate with a Boundary-Forming Insulator Complex. Molecular and Cellular Biology, 2017, 37, .	2.3	23
21	The Drosophila CLAMP protein associates with diverse proteins on chromatin. PLoS ONE, 2017, 12, e0189772.	2.5	20
22	Diverse Genome Topologies Characterize Dosage Compensation across Species. Trends in Genetics, 2019, 35, 308-315.	6.7	16
23	A new player in X identification: the CLAMP protein is a key factor in Drosophila dosage compensation. Chromosome Research, 2014, 22, 505-515.	2.2	10
24	Wisdom from the fly. Trends in Genetics, 2014, 30, 479-481.	6.7	10
25	X-marks the spot: X-chromosome identification during dosage compensation. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2014, 1839, 234-240.	1.9	9
26	TIMEOR: a web-based tool to uncover temporal regulatory mechanisms from multi-omics data. Nucleic Acids Research, 2021, 49, W641-W653.	14.5	9
27	Integrating Long-Range Regulatory Interactions to Predict Gene Expression Using Graph Convolutional Networks. Journal of Computational Biology, 2022, 29, 409-424.	1.6	9
28	The zinc finger protein CLAMP promotes long-range chromatin interactions that mediate dosage compensation of the Drosophila male X-chromosome. Epigenetics and Chromatin, 2021, 14, 29.	3.9	8
29	Dosage Compensation: How to Be Compensated…Or Not?. Current Biology, 2019, 29, R1229-R1231.	3.9	3
30	Getting started: altering promoter choice as a mechanism for cell type differentiation. Genes and Development, 2020, 34, 619-620.	5.9	1