Gayong Shim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8368996/publications.pdf

Version: 2024-02-01

136950 155660 3,134 69 32 55 h-index citations g-index papers 71 71 71 5133 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Lipid-based nanoparticles for photosensitive drug delivery systems. Journal of Pharmaceutical Investigation, 2022, 52, 151-160.	5.3	19
2	Fibroblast activation protein activated antifibrotic peptide delivery attenuates fibrosis in mouse models of liver fibrosis. Nature Communications, 2022, 13, 1516.	12.8	23
3	DNA-based artificial dendritic cells for in situ cytotoxic T cell stimulation and immunotherapy. Bioactive Materials, 2022, 15, 160-172.	15.6	6
4	Melanin-loaded CpG DNA hydrogel for modulation of tumor immune microenvironment. Journal of Controlled Release, 2021, 330, 540-553.	9.9	62
5	Photosensitizerâ€Free Phototherapy with Peptide Micelle Nanoadjuvants for Cancer Vaccine against Metastasis of Melanoma. Advanced Therapeutics, 2021, 4, 2000288.	3.2	4
6	Lipid Nanoparticle-Mediated Lymphatic Delivery of Immunostimulatory Nucleic Acids. Pharmaceutics, 2021, 13, 490.	4.5	11
7	Cell membrane-derived vesicles for delivery of therapeutic agents. Acta Pharmaceutica Sinica B, 2021, 11, 2096-2113.	12.0	79
8	Electromagnetized Graphene Facilitates Direct Lineage Reprogramming into Dopaminergic Neurons. Advanced Functional Materials, 2021, 31, 2105346.	14.9	6
9	Fibrinolytic nanocages dissolve clots in the tumor microenvironment, improving the distribution and therapeutic efficacy of anticancer drugs. Experimental and Molecular Medicine, 2021, 53, 1592-1601.	7.7	8
10	Genome-Editing-Mediated Restructuring of Tumor Immune Microenvironment for Prevention of Metastasis. ACS Nano, 2021, 15, 17635-17656.	14.6	16
11	Noncovalent tethering of nucleic acid aptamer on DNA nanostructure for targeted photo/chemo/gene therapies. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 24, 102053.	3.3	9
12	Tannic acid-functionalized boron nitride nanosheets for theranostics. Journal of Controlled Release, 2020, 327, 616-626.	9.9	24
13	Molecular engineering of antibodies for site-specific conjugation to lipid polydopamine hybrid nanoparticles. Acta Pharmaceutica Sinica B, 2020, 10, 2212-2226.	12.0	21
14	Photosensitizer-Trapped Gold Nanocluster for Dual Light-Responsive Phototherapy. Biomedicines, 2020, 8, 521.	3.2	7
15	Biomaterials for gene editing therapeutics. , 2020, , 187-231.		0
16	Biomimetic polymeric nanoparticle-based photodynamic immunotherapy and protection against tumor rechallenge. Biomaterials Science, 2020, 8, 1106-1116.	5.4	27
17	A Peptide Probe Enables Photoacoustic-Guided Imaging and Drug Delivery to Lung Tumors in <i>K-rasLA2</i> Mutant Mice. Cancer Research, 2019, 79, 4271-4282.	0.9	31
18	<i>In Situ</i> Nanoadjuvant-Assembled Tumor Vaccine for Preventing Long-Term Recurrence. ACS Nano, 2019, 13, 7442-7462.	14.6	104

#	Article	IF	CITATIONS
19	In vivo neuronal gene editing via CRISPR–Cas9 amphiphilic nanocomplexes alleviates deficits in mouse models of Alzheimer's disease. Nature Neuroscience, 2019, 22, 524-528.	14.8	183
20	Sequential activation of anticancer therapy triggered by tumor microenvironment-selective imaging. Journal of Controlled Release, 2019, 298, 110-119.	9.9	15
21	High Molecular Weight Chitosan-Complexed RNA Nanoadjuvant for Effective Cancer Immunotherapy. Pharmaceutics, 2019, 11, 680.	4.5	16
22	Staphylococcus aureus-mimetic control of antibody orientation on nanoparticles. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 16, 267-277.	3.3	15
23	Stemmed DNA nanostructure for the selective delivery of therapeutics. Nanoscale, 2018, 10, 7511-7518.	5.6	18
24	Chemokine-mimetic plerixafor derivative for tumor-specific delivery of nanomaterials. Nano Research, 2018, 11, 2159-2172.	10.4	5
25	Nonviral Delivery Systems for Cancer Gene Therapy: Strategies and Challenges. Current Gene Therapy, 2018, 18, 3-20.	2.0	51
26	Therapeutic gene editing: delivery and regulatory perspectives. Acta Pharmacologica Sinica, 2017, 38, 738-753.	6.1	95
27	Nanoformulation-based sequential combination cancer therapy. Advanced Drug Delivery Reviews, 2017, 115, 57-81.	13.7	80
28	Claudin 4-targeted nanographene phototherapy using a Clostridium perfringens enterotoxin peptide-photosensitizer conjugate. Acta Pharmacologica Sinica, 2017, 38, 954-962.	6.1	17
29	Activation of AMPK by berberine induces hepatic lipid accumulation by upregulation of fatty acid translocase CD36 in mice. Toxicology and Applied Pharmacology, 2017, 316, 74-82.	2.8	45
30	Light-switchable systems for remotely controlled drug delivery. Journal of Controlled Release, 2017, 267, 67-79.	9.9	59
31	Immune-camouflaged graphene oxide nanosheets for negative regulation of phagocytosis by macrophages. Journal of Materials Chemistry B, 2017, 5, 6666-6675.	5.8	14
32	Bacteriomimetic poly- \hat{l}^3 -glutamic acid surface coating for hemocompatibility and safety of nanomaterials. Nanotoxicology, 2017, 11, 1-9.	3.0	8
33	Graphene-based nanosheets for delivery of chemotherapeutics and biological drugs. Advanced Drug Delivery Reviews, 2016, 105, 205-227.	13.7	170
34	Lipid-based antigen delivery systems. Journal of Pharmaceutical Investigation, 2016, 46, 295-304.	5.3	14
35	Surface-modified liposomes for syndecan 2–targeted delivery of edelfosine. Asian Journal of Pharmaceutical Sciences, 2016, 11, 596-602.	9.1	5
36	Image-guided synergistic photothermal therapy using photoresponsive imaging agent-loaded graphene-based nanosheets. Journal of Controlled Release, 2015, 211, 28-36.	9.9	85

#	Article	IF	CITATIONS
37	Biomimetic DNA nanoballs for oligonucleotide delivery. Biomaterials, 2015, 62, 155-163.	11.4	34
38	Pharmacokinetics and In Vivo Fate of Intra-Articularly Transplanted Human Bone Marrow-Derived Clonal Mesenchymal Stem Cells. Stem Cells and Development, 2015, 24, 1124-1132.	2.1	41
39	Enhanced survival of human mesenchymal stem cells following co-delivery with glucagon-like peptide-1 analogue in fibrin gel. Journal of Pharmaceutical Investigation, 2015, 45, 143-149.	5.3	3
40	Functionalization of nano-graphenes by chimeric peptide engineering. RSC Advances, 2015, 5, 49905-49913.	3.6	11
41	Biomimetic chimeric peptide-tethered hydrogels for human mesenchymal stem cell delivery. Colloids and Surfaces B: Biointerfaces, 2015, 136, 634-640.	5.0	1
42	Nanotechnology and vaccine development. Asian Journal of Pharmaceutical Sciences, 2014, 9, 227-235.	9.1	105
43	Liposomal Co-Delivery of Omacetaxine Mepesuccinate and Doxorubicin for Synergistic Potentiation of Antitumor Activity. Pharmaceutical Research, 2014, 31, 2178-2185.	3.5	16
44	Reduced graphene oxide nanosheets coated with an anti-angiogenic anticancer low-molecular-weight heparin derivative for delivery of anticancer drugs. Journal of Controlled Release, 2014, 189, 80-89.	9.9	70
45	Structure-dependent photothermal anticancer effects of carbon-based photoresponsive nanomaterials. Biomaterials, 2014, 35, 4058-4065.	11.4	60
46	Pharmaceutical Applications of Graphene-based Nanosheets. Current Pharmaceutical Biotechnology, 2014, 14, 1016-1026.	1.6	18
47	Enhanced survival of transplanted human adipose-derived stem cells by co-delivery with liposomal apoptosome inhibitor in fibrin gel matrix. European Journal of Pharmaceutics and Biopharmaceutics, 2013, 85, 673-681.	4.3	15
48	Cholesteryl hyaluronic acid-coated, reduced graphene oxide nanosheets for anti-cancer drug delivery. Biomaterials, 2013, 34, 9638-9647.	11.4	168
49	Application of cationic liposomes for delivery of nucleic acids. Asian Journal of Pharmaceutical Sciences, 2013, 8, 72-80.	9.1	82
50	Safety and tumor tissue accumulation of pegylated graphene oxide nanosheets for co-delivery of anticancer drug and photosensitizer. Biomaterials, 2013, 34, 3402-3410.	11.4	219
51	Enhanced Intrapulmonary Delivery of Anticancer siRNA for Lung Cancer Therapy Using Cationic Ethylphosphocholine-based Nanolipoplexes. Molecular Therapy, 2013, 21, 816-824.	8.2	54
52	Small interfering RNAs (siRNAs) as cancer therapeutics. , 2013, , 237-269.		4
53	Cationic solid lipid nanoparticles for co-delivery of paclitaxel and siRNA. European Journal of Pharmaceutics and Biopharmaceutics, 2012, 80, 268-273.	4. 3	142
54	Tetraiodothyroacetic acid-tagged liposomes for enhanced delivery of anticancer drug to tumor tissue via integrin receptor. Journal of Controlled Release, 2012, 164, 213-220.	9.9	27

#	Article	IF	CITATION
55	Tumor vasculature targeting following co-delivery of heparin-taurocholate conjugate and suberoylanilide hydroxamic acid using cationic nanolipoplex. Biomaterials, 2012, 33, 4424-4430.	11.4	38
56	The synergistic therapeutic effect of cisplatin with Human papillomavirus E6/E7 short interfering RNA on cervical cancer cell lines <i>in vitro</i> and <i>in vivo</i> lnternational Journal of Cancer, 2012, 130, 1925-1936.	5.1	33
57	Enhanced tumor localization and retention of chlorin e6 in cationic nanolipoplexes potentiate the tumor ablation effects of photodynamic therapy. Nanotechnology, 2011, 22, 365101.	2.6	16
58	Trilysinoyl oleylamide-based cationic liposomes for systemic co-delivery of siRNA and an anticancer drug. Journal of Controlled Release, 2011, 155, 60-66.	9.9	91
59	In situ dose amplification by apoptosis-targeted drug delivery. Journal of Controlled Release, 2011, 154, 214-217.	9.9	24
60	Cationic drug-derived nanoparticles for multifunctional delivery of anticancer siRNA. Biomaterials, 2011, 32, 9785-9795.	11.4	62
61	Cationic Liposomal Co-delivery of Small Interfering RNA and a MEK Inhibitor for Enhanced Anticancer Efficacy. Pharmaceutical Research, 2011, 28, 3069-3078.	3.5	61
62	Tocopheryl oligochitosan-based self assembling oligomersomes for siRNA delivery. Biomaterials, 2011, 32, 849-857.	11.4	50
63	Enhanced Transfection Rates of Small-Interfering RNA Using Dioleylglutamide-Based Magnetic Lipoplexes. Nucleic Acid Therapeutics, 2011, 21, 165-172.	3.6	12
64	Pegylated poly-l-arginine derivatives of chitosan for effective delivery of siRNA. Journal of Controlled Release, 2010, 145, 159-164.	9.9	97
65	Cationic derivatives of biocompatible hyaluronic acids for delivery of siRNA and antisense oligonucleotides. Journal of Drug Targeting, 2009, 17, 123-132.	4.4	45
66	Anionic amino acid-derived cationic lipid for siRNA delivery. Journal of Controlled Release, 2009, 140, 268-276.	9.9	49
67	Hyaluronic acid complexed to biodegradable poly <scp>L</scp> â€arginine for targeted delivery of siRNAs. Journal of Gene Medicine, 2009, 11, 791-803.	2.8	65
68	Novel cationic cholesterol derivative-based liposomes for serum-enhanced delivery of siRNA. International Journal of Pharmaceutics, 2007, 353, 260-9.	5. 2	67
69	Enhanced Transfection Rates of Small-Interfering RNA Using Dioleylglutamide-Based Magnetic Lipoplexes. Oligonucleotides, 0, , 121102072334007.	2.7	0