Simon Mathew

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8368542/publications.pdf

Version: 2024-02-01

394421 361022 5,293 38 19 citations h-index papers

35 g-index 40 40 40 7198 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nature Chemistry, 2014, 6, 242-247.	13.6	3,982
2	Molecular Engineering of a Fluorene Donor for Dye-Sensitized Solar Cells. Chemistry of Materials, 2013, 25, 2733-2739.	6.7	154
3	Density Gradation of Open Metal Sites in the Mesospace of Porous Coordination Polymers. Journal of the American Chemical Society, 2017, 139, 11576-11583.	13.7	118
4	Optical, Electrochemical, and Photovoltaic Effects of an Electron-Withdrawing Tetrafluorophenylene Bridge in a Push–Pull Porphyrin Sensitizer Used for Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2011, 115, 14415-14424.	3.1	94
5	Ruthenium Porphyrin Functionalized Single-Walled Carbon Nanotube Arrays—A Step Toward Light Harvesting Antenna and Multibit Information Storage. Journal of the American Chemical Society, 2008, 130, 8788-8796.	13.7	93
6	Control over Electrochemical Water Oxidation Catalysis by Preorganization of Molecular Ruthenium Catalysts in Selfâ€Assembled Nanospheres. Angewandte Chemie - International Edition, 2018, 57, 11247-11251.	13.8	76
7	Molecular Engineering of Phthalocyanine Sensitizers for Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2014, 118, 17166-17170.	3.1	70
8	Tunable, strongly-donating perylene photosensitizers for dye-sensitized solar cells. Journal of Materials Chemistry, 2011, 21, 7166.	6.7	69
9	Investigation of electrodeposited cobalt sulphide counter electrodes and their application in next-generation dye sensitized solar cells featuring organic dyes and cobalt-based redox electrolytes. Journal of Power Sources, 2015, 275, 80-89.	7.8	64
10	Homogeneous Catalysts Based on Firstâ€Row Transitionâ€Metals for Electrochemical Water Oxidation. ChemSusChem, 2021, 14, 234-250.	6.8	64
11	Towards Compatibility between Ruthenium Sensitizers and Cobalt Electrolytes in Dyeâ€ 5 ensitized Solar Cells. Angewandte Chemie - International Edition, 2013, 52, 8731-8735.	13.8	61
12	Dye-sensitized solar cells using cobalt electrolytes: the influence of porosity and pore size to achieve high-efficiency. Journal of Materials Chemistry C, 2017, 5, 2833-2843.	5.5	52
13	Near-Infrared-Absorbing Indolizine-Porphyrin Push–Pull Dye for Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 16474-16489.	8.0	48
14	Synthesis, characterization and ab initio investigation of a panchromatic ullazine–porphyrin photosensitizer for dye-sensitized solar cells. Journal of Materials Chemistry A, 2016, 4, 2332-2339.	10.3	47
15	Surface functionalization of high free-volume polymers as a route to efficient hydrogen separation membranes. Journal of Materials Chemistry A, 2017, 5, 4686-4694.	10.3	37
16	Exclusive Photothermal Heat Generation by a Gadolinium Bis(naphthalocyanine) Complex and Inclusion into Modified High-Density Lipoprotein Nanocarriers for Therapeutic Applications. ACS Nano, 2013, 7, 8908-8916.	14.6	32
17	Redoxâ€Mediated Alcohol Oxidation Coupled to Hydrogen Gas Formation in a Dyeâ€Sensitized Photosynthesis Cell. Chemistry - A European Journal, 2021, 27, 218-221.	3.3	22
18	Control over Electrochemical Water Oxidation Catalysis by Preorganization of Molecular Ruthenium Catalysts in Selfâ€Assembled Nanospheres. Angewandte Chemie, 2018, 130, 11417-11421.	2.0	20

#	Article	IF	CITATIONS
19	Control of the overpotential of a [FeFe] hydrogenase mimic by a synthetic second coordination sphere. Chemical Communications, 2019, 55, 3081-3084.	4.1	20
20	Just Add Water: Modulating the Structure-Derived Acidity of Catalytic Hexameric Resorcinarene Capsules. Journal of the American Chemical Society, 2021, 143, 16419-16427.	13.7	19
21	Aqueous Biphasic Dyeâ€Sensitized Photosynthesis Cells for TEMPOâ€Based Oxidation of Glycerol. Angewandte Chemie - International Edition, 2022, 61, .	13.8	17
22	Synthesis and characterization of a range of POSS imides. Dyes and Pigments, 2012, 92, 659-667.	3.7	16
23	Finely Controlled Stepwise Engineering of Pore Environments and Mechanistic Elucidation of Waterâ€Stable, Flexible 2D Porous Coordination Polymers. Chemistry - A European Journal, 2018, 24, 6412-6417.	3.3	16
24	The Synthesis and Characterisation of a Freeâ€Base Porphyrin–Perylene Dyad that Exhibits Electronic Coupling in Both the Ground and Excited States. Chemistry - A European Journal, 2009, 15, 248-253.	3.3	15
25	Topological prediction of palladium coordination cages. Chemical Science, 2020, 11, 12350-12357.	7.4	14
26	Lindqvist polyoxometalates as electrolytes in p-type dye sensitized solar cells. Sustainable Energy and Fuels, 2019, 3, 96-100.	4.9	13
27	Catalytic Synthesis of 1 <i>H</i> -2-Benzoxocins: Cobalt(III)-Carbene Radical Approach to 8-Membered Heterocyclic Enol Ethers. Journal of the American Chemical Society, 2021, 143, 20501-20512.	13.7	12
28	Comparison of homogeneous and heterogeneous catalysts in dye-sensitised photoelectrochemical cells for alcohol oxidation coupled to dihydrogen formation. Sustainable Energy and Fuels, 2021, 5, 5707-5716.	4.9	10
29	S,Oâ€Ligand Promoted <i>meta</i> â€Câ^'H Arylation of Anisole Derivatives via Palladium/Norbornene Catalysis. Angewandte Chemie - International Edition, 2022, 61, .	13.8	9
30	p-Type dye-sensitized solar cells based on pseudorotaxane mediated charge-transfer. Faraday Discussions, 2019, 215, 393-406.	3.2	8
31	Novel Grafting onto Silica via Aldehyde Functionality. Silicon, 2009, 1, 29-36.	3.3	6
32	S,O‣igand Promoted <i>meta</i> â€Câ^H Arylation of Anisole Derivatives via Palladium/Norbornene Catalysis. Angewandte Chemie, 2022, 134, .	2.0	2
33	Mixed assembly of ferrocene/porphyrin onto carbon nanotube arrays towards multibit information storage. , 2008, , .		1
34	Surface mounted porphyrin-nanotube arrays: Towards energy-harvesting surfaces. , 2008, , .		1
35	A chromatography-free synthesis of <i>meso</i> -tetrakis(4-formylphenyl)porphyrin and <i>meso</i> -tetrakis(3-formylphenyl)porphyrin: Versatile synthons in supramolecular and macromolecular chemistry. Journal of Porphyrins and Phthalocyanines, 2022, 26, 427-433.	0.8	1
36	Application of Multiporphyrin Arrays to Solar Energy Conversion. , 2012, , 439-498.		1

ą	#	Article	IF	CITATIONS
:	37	Multistep photoinduced electron transfer processes in a self-assembled ternary array - Towards precise nanofabrication of efficient organic solar cells. , 2008, , .		0
	38	Aqueous Biphasic Dyeâ€Sensitized Photosynthesis Cells for TEMPOâ€Based Oxidation of Glycerol. Angewandte Chemie, 0, , .	2.0	0