Beverly A Mock

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8368146/publications.pdf Version: 2024-02-01

REVERIVA MOCK

#	Article	IF	CITATIONS
1	Conditional deletion of mTOR discloses its essential role in early Bâ€cell development. Molecular Carcinogenesis, 2022, 61, 408-416.	2.7	1
2	Fatty acid oxidation is required for embryonic stem cell survival during metabolic stress. EMBO Reports, 2021, 22, e52122.	4.5	14
3	WDR26 and MTF2 are therapeutic targets in multiple myeloma. Journal of Hematology and Oncology, 2021, 14, 203.	17.0	8
4	Attenuation of immuneâ€mediated bone marrow damage in conventionally housed mice. Molecular Carcinogenesis, 2020, 59, 237-245.	2.7	5
5	A Small Molecule Stabilizer of the MYC G4-Quadruplex Induces Endoplasmic Reticulum Stress, Senescence and Pyroptosis in Multiple Myeloma. Cancers, 2020, 12, 2952.	3.7	24
6	Hypomorphic mTOR Downregulates CDK6 and Delays Thymic Pre-T LBL Tumorigenesis. Molecular Cancer Therapeutics, 2020, 19, 2221-2232.	4.1	7
7	Conventional Co-Housing Modulates Murine Gut Microbiota and Hematopoietic Gene Expression. International Journal of Molecular Sciences, 2020, 21, 6143.	4.1	10
8	Cover Image, Volume 59, Issue 2. Molecular Carcinogenesis, 2020, 59, i.	2.7	0
9	Mouse tumor susceptibility genes identify drug combinations for multiple myeloma. Journal of Cancer Metastasis and Treatment, 2020, 2020, .	0.8	2
10	The transcription factor MZF1 differentially regulates murine Mtor promoter variants linked to tumor susceptibility. Journal of Biological Chemistry, 2019, 294, 16756-16764.	3.4	9
11	The transcription factor CBFB suppresses breast cancer through orchestrating translation and transcription. Nature Communications, 2019, 10, 2071.	12.8	60
12	Characterization of clinically used oral antiseptics as quadruplex-binding ligands. Nucleic Acids Research, 2018, 46, 2722-2732.	14.5	27
13	The Reign of Antibodies: A Celebration of and Tribute to Michael Potter and His Homogeneous Immunoglobulin Workshops. Journal of Immunology, 2018, 200, 23-26.	0.8	5
14	Chemical and structural studies provide a mechanistic basis for recognition of the MYC G-quadruplex. Nature Communications, 2018, 9, 4229.	12.8	131
15	Cooperative Targets of Combined mTOR/HDAC Inhibition Promote MYC Degradation. Molecular Cancer Therapeutics, 2017, 16, 2008-2021.	4.1	29
16	cFOS-SOX9 Axis Reprograms Bone Marrow-Derived Mesenchymal Stem Cells into Chondroblastic Osteosarcoma. Stem Cell Reports, 2017, 8, 1630-1644.	4.8	17
17	mTOR intersects antibody-inducing signals from TACI in marginal zone B cells. Nature Communications, 2017, 8, 1462.	12.8	65
18	Abstract 194: Effective targeting of MYC expression with a novel nucleic acid binding (G4-quadruplex) small molecule coupled with HDAC inhibition synergizes to limit myeloma growth. , 2017, , .		0

#	Article	IF	CITATIONS
19	Small Molecule Microarrays Enable the Identification of a Selective, Quadruplex-Binding Inhibitor of MYC Expression. ACS Chemical Biology, 2016, 11, 139-148.	3.4	112
20	Molecular Pathways: Increased Susceptibility to Infection Is a Complication of mTOR Inhibitor Use in Cancer Therapy. Clinical Cancer Research, 2016, 22, 277-283.	7.0	19
21	Abstract 2833: Genetic and pharmacologic inhibition of mTOR delays mortality due to thymc lymphoma formation in mice and is associated with decreases in cell cycle proteins. , 2016, , .		0
22	Abstract 322: Selective inhibition of MYC expression by a small molecule G-quadruplex stabilizer. , 2016, , .		0
23	Abstract A73: De-convoluting therapeutic resistance in a pancreatic cancer model: Pharmacogenomic evaluation of intratumoral clonal heterogeneity. , 2015, , .		1
24	Abstract 2309: Murine model of dual mTORC kinase inhibition identifies CDK6 as a synergistic target in T-ALL. , 2015, , .		0
25	Abstract B40: Selective suppression of Myc transcription with a G-quadruplex stabilizing small molecule. , 2015, , .		Ο
26	TORC1 and class I HDAC inhibitors synergize to suppress mature B cell neoplasms. Molecular Oncology, 2014, 8, 261-272.	4.6	25
27	Loss-of-function RNAi screens in breast cancer cells identify AURKB, PLK1, PIK3R1, MAPK12, PRKD2, and PTK6 as sensitizing targets of rapamycin activity. Cancer Letters, 2014, 354, 336-347.	7.2	22
28	Abstract 1629: Identification and biological characterization of a novel class of small molecules to inhibit c-myc transcription. , 2014, , .		0
29	Abstract 5472: Systems pharmacogenomics approach identifies synergistic molecular action of combined MTOR/HDAC inhibition on MYC. , 2014, , .		0
30	Increased Mammalian Lifespan and a Segmental and Tissue-Specific Slowing of Aging after Genetic Reduction of mTOR Expression. Cell Reports, 2013, 4, 913-920.	6.4	278
31	B Cell–Specific Deficiencies in mTOR Limit Humoral Immune Responses. Journal of Immunology, 2013, 191, 1692-1703.	0.8	85
32	A novel KIT-deficient mouse mast cell model for the examination of human KIT-mediated activation responses. Journal of Immunological Methods, 2013, 390, 52-62.	1.4	8
33	Abstract 4408: A functional genomics approach for identification of sirolimus sensitizer genes regulated by HDAC inhibitors , 2013, , .		0
34	Abstract 2217: A systems pharmacogenomic approach to identify synergistic molecular mechanisms of combined mTOR/HDAC inhibition , 2013, , .		0
35	Abstract 1555: Use of a mouse model of constitutive mTOR inhibition to identify molecular modulators of acquired resistance , 2013, , .		0
36	Abstract 4734: Genes cooperatively downregulated by combined mTOR/histone deactylase (HDAC) inhibition are overexpressed in myeloma patients with lower survival. , 2012, , .		0

#	Article	IF	CITATIONS
37	Constitutive reductions in mTOR alter cell size, immune cell development, and antibody production. Blood, 2011, 117, 1228-1238.	1.4	109
38	mTORC1 and mTORC2 differentially regulate homeostasis of neoplastic and non-neoplastic human mast cells. Blood, 2011, 118, 6803-6813.	1.4	48
39	CASZ1, a candidate tumor-suppressor gene, suppresses neuroblastoma tumor growth through reprogramming gene expression. Cell Death and Differentiation, 2011, 18, 1174-1183.	11.2	83
40	Abstract 805: mTORC protein levels affect class switch recombination, somatic hypermutation, and antibody production. , 2011, , .		0
41	Abstract LB-74: A high-throughput RNAi sensitization screen of rapamycin identifies targets for rational drug combination strategies. , 2010, , .		0
42	Mndal, a new interferon-inducible family member, is highly polymorphic, suppresses cell growth, and may modify plasmacytoma susceptibility. Blood, 2009, 114, 2952-2960.	1.4	32
43	The Collaborative Cross, a community resource for the genetic analysis of complex traits. Nature Genetics, 2004, 36, 1133-1137.	21.4	1,034
44	p16INK4a gene promoter variation and differential binding of a repressor, the ras-responsive zinc-finger transcription factor, RREB. Oncogene, 2003, 22, 2285-2295.	5.9	74
45	The nature and identification of quantitative trait loci: a community's view. Nature Reviews Genetics, 2003, 4, 911-916.	16.3	390
46	Frap, FKBP12 rapamycin-associated protein, is a candidate gene for the plasmacytoma resistance locus Pctr2 and can act as a tumor suppressor gene. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 14982-14987.	7.1	29
47	Efficiency Alleles of the Pctr1 Modifier Locus for Plasmacytoma Susceptibility. Molecular and Cellular Biology, 2001, 21, 310-318.	2.3	82
48	Structure and Localization of Mouse Pmscl1 and Pmscl2 Genes. Genomics, 2000, 64, 106-110.	2.9	3
49	Mouse Chromosome 4. Mammalian Genome, 1999, 10, 943-943.	2.2	3
50	The Role of p16INK4a (Cdkn2a) in Mouse Plasma Cell Tumors. Current Topics in Microbiology and Immunology, 1999, 246, 363-368.	1.1	8
51	Mouse chromosome 4. Mammalian Genome, 1998, 8, S68-S90.	2.2	6
52	Gene organization and chromosome location of the neural-specific RNA binding protein Elavl4. Gene, 1998, 208, 139-145.	2.2	18
53	The Plasmacytoma Resistance Gene, Pctr2, Delays the Onset of Tumorigenesis and Resides in the Telomeric Region of Chromosome 4. Blood, 1997, 90, 4092-4098.	1.4	30
54	Mouse chromosome 4. Mammalian Genome, 1997, 7, S60-S79.	2.2	2

#	Article	IF	CITATIONS
55	New strains of inbred SENCAR mice with increased susceptibility to induction of papillomas and squamous cell carcinomas in skin. , 1997, 20, 143-150.		21
56	Plasmacytoma-Associated Neuronal Glycoprotein,Pang,Maps to Mouse Chromosome 6 and Human Chromosome 3. Genomics, 1996, 34, 226-228.	2.9	6
57	The B-Lymphocyte Maturation Promoting Transcription Factor BLIMP1/PRDI-BF1 Maps to D6S447 on Human Chromosome 6q21–q22.1 and the Syntenic Region of Mouse Chromosome 10. Genomics, 1996, 37, 24-28.	2.9	44
58	Mml1,a New Common Integration Site in Murine Leukemia Virus-Induced Promonocytic Leukemias Maps to Mouse Chromosome 10. Virology, 1996, 224, 224-234.	2.4	15
59	CHUK, a Conserved Helix-Loop-Helix Ubiquitous Kinase, Maps to Human Chromosome 10 and Mouse Chromosome 19. Genomics, 1995, 27, 348-351.	2.9	32
60	Genetic regulation of leishmanial and mycobacterial infections: the Lsh / Ity / Bcg gene story continues. Immunology Letters, 1994, 43, 99-107.	2.5	100
61	Genetic and Physical Mapping of 2q35 in the Region of the NRAMP and IL8R Genes: Identification of a Polymorphic Repeat in Exon 2 of NRAMP. Genomics, 1994, 24, 295-302.	2.9	59
62	The gene for Lap18, leukemia-associated phosphoprotein p18 (metablastin), maps to distal mouse Chromosome 4. Mammalian Genome, 1993, 4, 461-462.	2.2	17
63	Mouse chromosome 15. Mammalian Genome, 1993, 4, S211-S222.	2.2	5
64	The Murine Homologue of the Human Interleukin-8 Receptor Type B Maps near the Ity-Lsh-Bcg Disease Resistance Locus. Genomics, 1993, 18, 410-413.	2.9	60
65	The gene for the dihydropyridine-sensitive calcium channel α2 subunit (CCHL2A) maps to the proximal region of mouse chromosome 5. Genomics, 1992, 13, 1325-1327.	2.9	12
66	The gene for lysyl oxidase maps to mouse chromosome 18. Genomics, 1992, 14, 822-823.	2.9	16
67	Expression of murine cyclin B1 mRNAs and genetic mapping of related genomic sequences. Genomics, 1992, 13, 1018-1030.	2.9	35
68	The gene for the α1 subunit of the skeletal muscle dihydropyridine-sensitive calcium channel (Cchl1a3) maps to mouse chromosome 1. Genomics, 1992, 14, 1089-1091.	2.9	12
69	A linkage map of mouse Chromosome 1 using an interspecific cross segregating for the gld autoimmunity mutation. Mammalian Genome, 1992, 2, 158-171.	2.2	83
70	Isolation and mapping of four new DNA markers from mouse Chromosome 4. Mammalian Genome, 1992, 3, 653-655.	2.2	9
71	Mouse Chromosome 4. Mammalian Genome, 1992, 3, S55-S64.	2.2	19
72	Mouse Chromosome 15. Mammalian Genome, 1992, 3, S220-S232.	2.2	5

#	Article	IF	CITATIONS
73	A brain L-type calcium channel $\hat{l}\pm 1$ subunit gene (CCHL1A2) maps to mouse chromosome 14 and human chromosome 3. Genomics, 1991, 11, 914-919.	2.9	31
74	Mouse chromosome 4. Mammalian Genome, 1991, 1, S51-S78.	2.2	27
75	Mouse chromosome 15. Mammalian Genome, 1991, 1, S241-S268.	2.2	8
76	IL9 maps to mouse chromosome 13 and human chromosome 5. Immunogenetics, 1990, 31, 265-270.	2.4	65
77	Mapping of the Ly-4 (L3T4) T-cell differentiation antigen on mouse chromosome 6 by the use of RFLPs in an interspecific cross. Immunogenetics, 1988, 27, 396-398.	2.4	18
78	T-cell receptor V T? genes in natural populations of mice. Immunogenetics, 1988, 27, 51-56.	2.4	23
79	Genes on chromosomes 1 and 4 in the mouse are associated with repair of radiation-induced chromatin damage. Genomics, 1988, 2, 257-262.	2.9	29
80	Longitudinal Patterns of Trypanosome Infections in Red-Spotted Newts. Journal of Parasitology, 1987, 73, 730.	0.7	6
81	A Mouse Homeo Box Gene, Hox-1.5, and the Morphological Locus, Hd, Map to Within 1 cM on Chromosome 6. Genetics, 1987, 116, 607-612.	2.9	43
82	The infrapopulation dynamics of trypanosomes in red-spotted newts. Parasitology, 1984, 88, 267-282.	1.5	6