Nidhi Gour

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8368027/publications.pdf

Version: 2024-02-01

687363 752698 21 450 13 20 citations h-index g-index papers 49 49 49 521 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Self-assembling DNA–peptide hybrids: morphological consequences of oligonucleotide grafting to a pathogenic amyloid fibrils forming dipeptide. Chemical Communications, 2012, 48, 5440.	4.1	62
2	Antiâ€ <scp>I</scp> nfectious Surfaces Achieved by Polymer Modification. Macromolecular Materials and Engineering, 2014, 299, 648-668.	3.6	50
3	Amyloid-like Structures Formed by Single Amino Acid Self-Assemblies of Cysteine and Methionine. ACS Chemical Neuroscience, 2019, 10, 1230-1239.	3 . 5	48
4	Synthesis and Aggregation Studies of a Pyridothiazole-Based AIEE Probe and Its Application in Sensing Amyloid Fibrillation. ACS Applied Bio Materials, 2019, 2, 4442-4455.	4.6	31
5	Bending of peptide nanotubes by focused electron and ion beams. Soft Matter, 2009, 5, 1789.	2.7	23
6	Controlling morphology of peptideâ€based soft structures by covalent modifications. Journal of Peptide Science, 2012, 18, 405-412.	1.4	22
7	Unusual Aggregates Formed by the Self-Assembly of Proline, Hydroxyproline, and Lysine. ACS Chemical Neuroscience, 2021, 12, 3237-3249.	3 . 5	22
8	Label-free, optical sensing of the supramolecular assembly into fibrils of a ditryptophan–DNA hybrid. Chemical Communications, 2014, 50, 6863-6865.	4.1	20
9	Sequential and cellular detection of copper and lactic acid by disaggregation and reaggregation of the fluorescent panchromatic fibres of an acylthiourea based sensor. Soft Matter, 2021, 17, 4304-4316.	2.7	20
10	Controlled aggregation of peptide–DNA hybrids into amyloid-like fibrils. European Polymer Journal, 2015, 65, 268-275.	5 . 4	19
11	Synthesis and AFM studies of lectin–carbohydrate self-assemblies. Tetrahedron, 2008, 64, 7331-7337.	1.9	16
12	Mannosylated self-assembled structures for molecular confinement and gene delivery applications. Biochemical and Biophysical Research Communications, 2009, 378, 503-506.	2.1	15
13	Metabolite assemblies: A surprising extension to the amyloid hypothesis. Current Opinion in Chemical Biology, 2021, 64, 154-164.	6.1	15
14	Synthesis and selfâ€assembly of a neoglycopeptide: morphological studies and ultrasoundâ€mediated DNA encapsulation. Journal of Peptide Science, 2011, 17, 148-153.	1.4	13
15	Formation of DNAâ€Copolymer Fibrils Through an Amyloidâ€Like Nucleation Polymerization Mechanism. Macromolecular Rapid Communications, 2015, 36, 768-773.	3.9	13
16	Chemical Perspective of the Mechanism of Action of Antiamyloidogenic Compounds Using a Minimalistic Peptide as a Reductionist Model. ACS Chemical Neuroscience, 2021, 12, 2851-2864.	3.5	13
17	Green synthesized nanoparticles: Classification, synthesis, characterization, and applications. Comprehensive Analytical Chemistry, 2021, , 173-222.	1.3	8
18	Nanomaterials as therapeutic and diagnostic tool for controlling plant diseases. Comprehensive Analytical Chemistry, 2019, 84, 225-261.	1.3	7

Nidhi Gour

#	Article	lF	CITATIONS
19	Self-assembly of a benzothiazolone conjugate into panchromatic fluorescent fibres and their application in cellular imaging. New Journal of Chemistry, 2021, 45, 17211-17221.	2.8	6
20	Controlled aggregation properties of single amino acids modified with protecting groups. New Journal of Chemistry, 2022, 46, 4746-4755.	2.8	5
21	A new aggregation induced emission enhancement (AIEE) dye which self-assembles to panchromatic fluorescent flowers and has application in sensing dichromate ions. Soft Matter, 2022, 18, 3019-3030.	2.7	5