
Abderrahim Wakif

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8367348/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Thermal radiation and surface roughness effects on the thermo-magneto-hydrodynamic stability of alumina–copper oxide hybrid nanofluids utilizing the generalized Buongiorno's nanofluid model. Journal of Thermal Analysis and Calorimetry, 2021, 143, 1201-1220.	3.6	210
2	Novel Physical Insights into the Thermodynamic Irreversibilities Within Dissipative EMHD Fluid Flows Past over a Moving Horizontal Riga Plate in the Coexistence of Wall Suction and Joule Heating Effects: A Comprehensive Numerical Investigation. Arabian Journal for Science and Engineering, 2020, 45, 9423-9438.	3.0	144
3	Numerical Analysis of the Unsteady Natural Convection MHD Couette Nanofluid Flow in the Presence of Thermal Radiation Using Single and Two-Phase Nanofluid Models for Cu–Water Nanofluids. International Journal of Applied and Computational Mathematics, 2018, 4, 1.	1.6	135
4	Influence of a uniform transverse magnetic field on the thermo-hydrodynamic stability in water-based nanofluids with metallic nanoparticles using the generalized Buongiorno's mathematical model. European Physical Journal Plus, 2018, 133, 1.	2.6	131
5	Meta-analysis on thermo-migration of tiny/nano-sized particles in the motion of various fluids. Chinese Journal of Physics, 2020, 68, 293-307.	3.9	131
6	Numerical spectral examination of EMHD mixed convective flow of second-grade nanofluid towards a vertical Riga plate using an advanced version of the revised Buongiorno's nanofluid model. Journal of Thermal Analysis and Calorimetry, 2021, 143, 2379-2393.	3.6	121
7	Generalized differential quadrature analysis of unsteady threeâ€dimensional MHD radiating dissipative Casson fluid conveying tiny particles. Heat Transfer, 2020, 49, 2595-2626.	3.0	110
8	A Novel Numerical Procedure for Simulating Steady MHD Convective Flows of Radiative Casson Fluids over a Horizontal Stretching Sheet with Irregular Geometry under the Combined Influence of Temperature-Dependent Viscosity and Thermal Conductivity. Mathematical Problems in Engineering, 2020, 2020, 1-20.	1.1	103
9	Towards a new MHD non-homogeneous convective nanofluid flow model for simulating a rotating inclined thin layer of sodium alginate-based Iron oxide exposed to incident solar energy. International Communications in Heat and Mass Transfer, 2022, 130, 105800.	5.6	92
10	Numerical simulation of a thermally enhanced EMHD flow of a heterogeneous micropolar mixture comprising (60%)-ethylene glycol (EG), (40%)-water (W), and copper oxide nanomaterials (CuO). Case Studies in Thermal Engineering, 2022, 35, 102046.	5.7	89
11	Numerical Differential Quadrature Examination of Steady Mixed Convection Nanofluid Flows Over an Isothermal Thin Needle Conveying Metallic and Metallic Oxide Nanomaterials: A Comparative Investigation. Arabian Journal for Science and Engineering, 2020, 45, 5331-5346.	3.0	80
12	A semi-analytical analysis of electro-thermo-hydrodynamic stability in dielectric nanofluids using Buongiorno's mathematical model together with more realistic boundary conditions. Results in Physics, 2018, 9, 1438-1454.	4.1	78
13	Significances of blowing and suction processes on the occurrence of thermo-magneto-convection phenomenon in a narrow nanofluidic medium: A revised Buongiorno's nanofluid model. Case Studies in Thermal Engineering, 2020, 22, 100726.	5.7	78
14	Significance of suction and dual stretching on the dynamics of various hybrid nanofluids: Comparative analysis between type I and type II models. Physica Scripta, 2020, 95, 095205.	2.5	76
15	Numerical Scrutinization of Darcy-Forchheimer Relation in Convective Magnetohydrodynamic Nanofluid Flow Bounded by Nonlinear Stretching Surface in the Perspective of Heat and Mass Transfer. Micromachines, 2021, 12, 374.	2.9	70
16	Significance of nanoparticle's radius, heat flux due to concentration gradient, and mass flux due to temperature gradient: The case of Water conveying copper nanoparticles. Scientific Reports, 2021, 11, 1882.	3.3	70
17	Significance of variability in magnetic field strength and heat source on the radiative-convective motion of sodium alginate-based nanofluid within a Darcy-Brinkman porous structure bounded vertically by an irregular slender surface. Case Studies in Thermal Engineering, 2021, 28, 101428.	5.7	69
18	Numerical analysis of the onset of longitudinal convective rolls in a porous medium saturated by an electrically conducting nanofluid in the presence of an external magnetic field. Results in Physics, 2017, 7, 2134-2152.	4.1	67

ABDERRAHIM WAKIF

#	Article	IF	CITATIONS
19	Heat transfers thermodynamic activity of a second-grade ternary nanofluid flow over a vertical plate with Atangana-Baleanu time-fractional integral. AEJ - Alexandria Engineering Journal, 2022, 61, 10045-10053.	6.4	66
20	Numerical investigation of EMHD nanofluid flows over a convectively heated riga pattern positioned horizontally in a Darcy-Forchheimer porous medium: application of passive control strategy and generalized transfer laws. Waves in Random and Complex Media, 0, , 1-20.	2.7	65
21	Numerical Examination of the Entropic Energy Harvesting in a Magnetohydrodynamic Dissipative Flow of Stokes' Second Problem: Utilization of the Gear-Generalized Differential Quadrature Method. Journal of Non-Equilibrium Thermodynamics, 2019, 44, 385-403.	4.2	63
22	Significance of nanoparticles' shape and thermo-hydrodynamic slip constraints on MHD alumina-water nanoliquid flows over a rotating heated disk: The passive control approach. International Communications in Heat and Mass Transfer, 2021, 129, 105711.	5.6	63
23	Numerical Simulation of MHD Peristaltic Flow with Variable Electrical Conductivity and Joule Dissipation Using Generalized Differential Quadrature Method. Communications in Theoretical Physics, 2019, 71, 509.	2.5	62
24	Influence of Variable Transport Properties on Nonlinear Radioactive Jeffrey Fluid Flow Over a Disk: Utilization of Generalized Differential Quadrature Method. Arabian Journal for Science and Engineering, 2019, 44, 5987-5996.	3.0	62
25	New insights into the dynamics of alumina-(60% ethylene glycolÂ+Â40% water) over an isothermal stretching sheet using a renovated Buongiorno's approach: A numerical GDQLLM analysis. International Communications in Heat and Mass Transfer, 2022, 133, 105937.	5.6	62
26	Dynamics of radiative-reactive Walters-b fluid due to mixed convection conveying gyrotactic microorganisms, tiny particles experience haphazard motion, thermo-migration, and Lorentz force. Physica Scripta, 2021, 96, 125239.	2.5	61
27	Gear-generalized differential quadrature analysis of oscillatory convective Taylor-Couette flows of second-grade fluids subject to Lorentz and Darcy-Forchheimer quadratic drag forces. International Communications in Heat and Mass Transfer, 2021, 126, 105395.	5.6	57
28	A generalized differential quadrature algorithm for simulating magnetohydrodynamic peristaltic flow of bloodâ€based nanofluid containing magnetite nanoparticles: A physiological application. Numerical Methods for Partial Differential Equations, 0, , .	3.6	55
29	Second Law Analysis of Dissipative Nanofluid Flow over a Curved Surface in the Presence of Lorentz Force: Utilization of the Chebyshev–Gauss–Lobatto Spectral Method. Nanomaterials, 2019, 9, 195.	4.1	54
30	Multiple linear regression on bioconvective MHD hybrid nanofluid flow past an exponential stretching sheet with radiation and dissipation effects. International Communications in Heat and Mass Transfer, 2022, 135, 106115.	5.6	52
31	Significance of Rosseland's Radiative Process on Reactive Maxwell Nanofluid Flows over an Isothermally Heated Stretching Sheet in the Presence of Darcy–Forchheimer and Lorentz Forces: Towards a New Perspective on Buongiorno's Model. Micromachines, 2022, 13, 368.	2.9	51
32	Thermally Enhanced Darcy-Forchheimer Casson-Water/Glycerine Rotating Nanofluid Flow with Uniform Magnetic Field. Micromachines, 2021, 12, 605.	2.9	44
33	Significance of the inconstant viscosity and internal heat generation on the occurrence of Darcy-Brinkman convective motion in a couple-stress fluid saturated porous medium: An analytical solution. International Communications in Heat and Mass Transfer, 2021, 122, 105165.	5.6	42
34	Effects of fractional derivative and heat source/sink on MHD free convection flow of nanofluids in a vertical cylinder: A generalized Fourier's law model. Case Studies in Thermal Engineering, 2021, 28, 101518.	5.7	42
35	MHD Prandtl fluid flow past an isothermal permeable sphere with slip effects. Case Studies in Thermal Engineering, 2019, 14, 100447.	5.7	41
36	Numerical Entropic Analysis of Mixed MHD Convective Flows from a Non-Isothermal Vertical Flat Plate for Radiative Tangent Hyperbolic Blood Biofluids Conveying Magnetite Ferroparticles: Dual Similarity Solutions. Arabian Journal for Science and Engineering, 2020, 45, 5311-5330.	3.0	41

ABDERRAHIM WAKIF

#	Article	IF	CITATIONS
37	Numerical Study of the Onset of Convection in a Newtonian Nanofluid Layer with Spatially Uniform and Non Uniform Internal Heating. Journal of Nanofluids, 2017, 6, 136-148.	2.7	40
38	Significance of magnetic field and activation energy on the features of stratified mixed radiative-convective couple-stress nanofluid flows with motile microorganisms. AEJ - Alexandria Engineering Journal, 2022, 61, 1425-1436.	6.4	39
39	Numerical exploration of MHD falkner-skan-sutterby nanofluid flow by utilizing an advanced non-homogeneous two-phase nanofluid model and non-fourier heat-flux theory. AEJ - Alexandria Engineering Journal, 2020, 59, 4851-4864.	6.4	38
40	Numerical investigations on magnetic field modeling for Carreau non-Newtonian fluid flow past an isothermal sphere. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2018, 40, 1.	1.6	36
41	Generalized differential quadrature scrutinization of an advanced <scp>MHD</scp> stability problem concerned waterâ€based nanofluids with metal/metal oxide nanomaterials: A proper application of the revised twoâ€phase nanofluid model with convective heating and throughâ€flow boundary conditions. Numerical Methods for Partial Differential Equations, 0,	3.6	35
42	MAGNETO-CONVECTION OF ALUMINA - WATER NANOFLUID WITHIN THIN HORIZONTAL LAYERS USING THE REVISED GENERALIZED BUONGIORNO'S MODEL. Frontiers in Heat and Mass Transfer, 2018, 12, .	0.2	33
43	Numerical simulation of a nonlinear coupled differential system describing a convective flow of Casson gold–blood nanofluid through a stretched rotating rigid disk in the presence of Lorentz forces and nonlinear thermal radiation. Numerical Methods for Partial Differential Equations, 0, , .	3.6	32
44	A Brief Technical Note on the Onset of Convection in a Horizontal Nanofluid Layer of Finite Depth via Wakif-Galerkin Weighted Residuals Technique (WGWRT). Defect and Diffusion Forum, 0, 409, 90-94.	0.4	32
45	Generalized differential quadrature analysis of electroâ€magnetoâ€hydrodynamic dissipative flows over a heated Riga plate in the presence of a spaceâ€dependent heat source: The caseÂforÂstrong suction effect. Heat Transfer, 2022, 51, 2063-2078.	3.0	31
46	Irreversibility Analysis of Dissipative Fluid Flow Over A Curved Surface Stimulated by Variable Thermal Conductivity and Uniform Magnetic Field: Utilization of Generalized Differential Quadrature Method. Entropy, 2018, 20, 943.	2.2	30
47	Second Law Analysis of Unsteady MHD Viscous Flow over a Horizontal Stretching Sheet Heated Non-Uniformly in the Presence of Ohmic Heating: Utilization of Gear-Generalized Differential Quadrature Method. Entropy, 2019, 21, 240.	2.2	29
48	Mixed Convective Radiative Flow through a Slender Revolution Bodies Containing Molybdenum-Disulfide Graphene Oxide along with Generalized Hybrid Nanoparticles in Porous Media. Crystals, 2020, 10, 771.	2.2	24
49	Application of Arrhenius kinetics on MHD radiative Von Kármán Casson nanofluid flow occurring in a Darcy-Forchheimer porous medium in the presence of an adjustable heat source. Physica Scripta, 2021, 96, 125228.	2.5	21
50	Bioconvection: Significance of mixed convection and mhd on dynamics of Casson nanofluid in the stagnation point of rotating sphere via finite element simulation. Mathematics and Computers in Simulation, 2022, 194, 254-268.	4.4	21
51	Effects of Wavy Wall Amplitudes on Mixed Convection Heat Transfer in a Ventilated Wavy Cavity Filled by Copper-Water Nanofluid Containing a Central Circular Cold Body. Journal of Nanofluids, 2018, 8, 1170-1178.	2.7	19
52	Analysis of entropy generation and biomechanical investigation of MHD Jeffery fluid through a vertical non-uniform channel. Case Studies in Thermal Engineering, 2021, 28, 101538.	5.7	19
53	Significance of Darcy-Forchheimer and Lorentz forces on radiative alumina-water nanofluid flows over a slippery curved geometry under multiple convective constraints: a renovated Buongiorno's model with validated thermophysical correlations. Waves in Random and Complex Media, 0, , 1-30.	2.7	19
54	Numerical study of natural and mixed convection in a square cavity filled by a Cu–water nanofluid with circular heating and cooling cylinders. Mechanics and Industry, 2017, 18, 502.	1.3	18

#	Article	IF	CITATIONS
55	Significance of nanoparticle radius, interâ€particle spacing, inclined magnetic field, and spaceâ€dependent internal heating: The case of chemically reactive water conveying copper nanoparticles. ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik, 2022, 102, .	1.6	18
56	Significance of Buoyancy, Velocity Index and Thickness of an Upper Horizontal Surface of a Paraboloid of Revolution: The Case of Non-Newtonian Carreau Fluid. Defect and Diffusion Forum, 2018, 387, 550-561.	0.4	17
57	Exploration of dual solutions for an enhanced cross liquid flow past a moving wedge under the significant impacts of activation energy and chemical reaction. Heliyon, 2020, 6, e04565.	3.2	17
58	Numerical Study of Mixed Convection of the Nanofluids in Two-Sided Lid-Driven Square Cavity with a Pair of Triangular Heating Cylinders. Journal of Engineering (United States), 2016, 2016, 1-8.	1.0	14
59	A Study on Non-Newtonian Transport Phenomena in Mhd Fluid Flow From a Vertical Cone With Navier Slip and Convective Heating. Nonlinear Engineering, 2019, 8, 534-545.	2.7	13
60	Numerical Examination of the Thermo-Electro-Hydrodynamic Convection in a Horizontal Dielectric Nanofluid Layer Using the Power Series Method. Journal of Nanofluids, 2019, 8, 117-131.	2.7	13
61	A one-phase Stefan problem with size-dependent thermal conductivity and moving phase change material under the most generalized boundary condition. Waves in Random and Complex Media, 0, , 1-29.	2.7	13
62	Dynamics of water conveying copper and alumina nanomaterials when viscous dissipation and thermal radiation are significant: Singleâ€phase model with multiple solutions. Mathematical Methods in the Applied Sciences, 2023, 46, 11603-11617.	2.3	12
63	Haar wavelet scrutinization of heat and mass transfer features during the convective boundary layer flow of a nanofluid moving over a nonlinearly stretching sheet. Partial Differential Equations in Applied Mathematics, 2021, 4, 100192.	2.4	11
64	Finite Volume Analysis of Free Convection Heat Transfer in a Square Enclosure Filled by a Cu-Water Nanofluid Containing Different Shapes of Heating Cylinder. Journal of Nanofluids, 2017, 6, 761-768.	2.7	10
65	Significance of Lorentz forces on Jeffrey nanofluid flows over a convectively heated flat surface featured by multiple velocity slips and dual stretching constraint: a homotopy analysis approach. Journal of Computational Design and Engineering, 2022, 9, 564-582.	3.1	10
66	Numerical simulation of entropy transport in the oscillating fluid flow with transpiration and internal fluid heating by GGDQM. Waves in Random and Complex Media, 0, , 1-19.	2.7	10
67	Effects of Variable Fluid Properties on Oblique Stagnation Point Flow of a Casson Nanofluid with Convective Boundary Conditions. Defect and Diffusion Forum, 0, 401, 183-196.	0.4	9
68	Numerical Study of a Williamson Fluid Past a Semi-Infinite Vertical Plate with Convective Heating and Radiation Effects. , 0, 28, 1-15.		9
69	HEAT TRANSFER AND CU-WATER NANOFLUID FLOW IN A VENTILATED CAVITY HAVING CENTRAL COOLING CYLINDER AND HEATED FROM THE BELOW CONSIDERING THREE DIFFERENT OUTLET PORT LOCATIONS. Frontiers in Heat and Mass Transfer, 0, 11, .	0.2	8
70	Significance of deposition and diffusion retention on the performance of the composite membrane. Waves in Random and Complex Media, 0, , 1-14.	2.7	8
71	Numerical Study of Forced, Mixed and Natural Convection of Nanofluids Inside a Ventilated Cavity Containing Different Shapes of Cold Block. Journal of Nanofluids, 2019, 8, 439-447.	2.7	7
72	Heat Transfer Analysis on Squeezing Unsteady MHD Nanofluid Flow Between Two Parallel Plates Considering Thermal Radiation, Magnetic and Viscous Dissipations Effects a Solution by Using Homotopy Perturbation Method. Sensor Letters, 2020, 18, 113-121.	0.4	7

#	Article	IF	CITATIONS
73	Numerical Modeling of Natural Convection Heat Transfer in a Wavy Wall Enclosure Filled by a Cu-water Nanofluid with a Square Cooler. Journal of Nanofluids, 2017, 6, 324-333.	2.7	6
74	MODELING OF FREE CONVECTION HEAT TRANSFER ENHANCEMENT UTILIZING NANOFLUID INSIDE A WAVY WAL ENCLOSURE WITH A PAIR OF HOT AND COLD CYLINDERS. Frontiers in Heat and Mass Transfer, 0, 8, .	0.2	6
75	Numerical Investigation of Mixed Convection Heat Transfer of Nanofluid in a Lid Driven Square Cavity with Three Triangular Heating Blocks. International Journal of Computer Applications, 2016, 143, 37-45.	0.2	6
76	Electro-kinetically modulated peristaltic mechanism of Jeffrey liquid through a micro-channel with variable viscosity. Thermal Science, 2021, 25, 271-277.	1.1	6
77	A Note on the Similar and Non-Similar Solutions of Powell-Eyring Fluid Flow Model and Heat Transfer over a Horizontal Stretchable Surface. Defect and Diffusion Forum, 0, 401, 25-35.	0.4	5
78	Magnetohydrodynamic peristaltic flow of Bingham fluid in a channel: An application to blood flow. Journal of Mechanical Engineering and Sciences, 2021, 15, 8082-8094.	0.6	5
79	A comprehensive entropic scrutiny of dissipative flows over a thin needle featured by variable thermophysical properties. Waves in Random and Complex Media, 0, , 1-17.	2.7	5
80	Effects of Wu's Slip and Non-Uniform Source/Sink on Entropy Optimized Radiative Magnetohydrodynamic Up/Down Flow of Nanofluids. Journal of Nanofluids, 2022, 11, 305-317.	2.7	5
81	Numerical Study of a Thermal Convection Induced by a Purely Internal Heating in a Rotating Medium Saturated by a Radiating Nanofluid. International Journal of Computer Applications, 2016, 135, 33-42.	0.2	4
82	Semi-Analytical Resolution of a Squeezing Unsteady Nanofluid Flow Between Two Parallel Plates Using Homotopy Perturbation Method (HPM). WSEAS Transactions on Heat and Mass Transfer, 2021, 16, 1-13.	0.4	3
83	Couple stress flow of exponentially stretching sheet with Cattaneo–Christov heat flux model. Heat Transfer, 2022, 51, 4819-4832.	3.0	3
84	Physical insights into the effects of quantum dots size and temperature on efficiency of InAs/GaAs quantum dots intermediate band solar cell. Physica A: Statistical Mechanics and Its Applications, 2020, 547, 123786.	2.6	2
85	Analytical and Numerical Study of the Onset of Electroconvection in a Dielectric Nanofluid Saturated a Rotating Darcy Porous Medium. International Journal of Advanced Computer Science and Applications, 2016, 7, .	0.7	2
86	COMPREHENSIVE EXAMINATION OF THE THREE-DIMENSIONAL ROTATING FLOW OF A UCM NANOLIQUID OVER AN EXPONENTIALLY STRETCHABLE CONVECTIVE SURFACE UTILIZING THE OPTIMAL HOMOTOPY ANALYSIS METHOD. Frontiers in Heat and Mass Transfer, 0, 14, .	0.2	2
87	Numerical exploration of mixed convection heat transfer features within a copper-water nanofluidic medium occupied a square geometrical cavity. Mathematical Modeling and Computing, 2021, 8, 807-820.	1.0	2
88	Effects of the Form Factor and the Force of the Gravity on the Thermal Exchanges by Natural Convection in a Rectangular Cavity Filled with Nanofluid. Engineering, 2019, 11, 59-73.	0.8	1
89	Fourth-Order Compact Formulation for the Resolution of Heat Transfer in Natural Convection of Water-Cu Nanofluid in a Square Cavity with a Sinusoidal Boundary Thermal Condition. World Journal of Nano Science and Engineering, 2016, 06, 70-89.	0.3	1
90	Analytical Study of Heat Transfer of a Unsteady Newtonian Nanofluid Flow Problem. WSEAS Transactions on Heat and Mass Transfer, 2020, 15, 184-194.	0.4	1