
Petrus A Santa-Cruz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8366364/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Spectroscopic properties and design of highly luminescent lanthanide coordination complexes. Coordination Chemistry Reviews, 2000, 196, 165-195.	18.8	1,417
2	Fluorescence enhancement induced by the presence of small silver particles in Eu3+ doped materials. Journal of Luminescence, 1985, 33, 261-272.	3.1	242
3	Enhancement of Pr3+ luminescence in PbO–GeO2 glasses containing silver nanoparticles. Applied Physics Letters, 2005, 87, 241914.	3.3	135
4	White light simulation by up-conversion in fluoride glass host. Journal of Alloys and Compounds, 2002, 344, 260-263.	5.5	62
5	Luminescence enhancement of Pb2+ ions in TeO2–PbO–GeO2 glasses containing silver nanostructures. Journal of Applied Physics, 2006, 99, 123522.	2.5	62
6	A new Er3+ -doped vitreous fluoride amplification medium with crystal-like cross-sections and reduced inhomogeneous line width. Optical Materials, 1996, 5, 75-78.	3.6	47
7	Physico-Chemical Characteristics and Functional Properties of Chitin and Chitosan Produced by Mucor circinelloides Using Yam Bean as Substrate. Molecules, 2011, 16, 7143-7154.	3.8	43
8	Eu-β-diketonate complex OLED as UV portable dosimeter. Synthetic Metals, 2011, 161, 964-968.	3.9	37
9	Red, green and blue light generation in fluoride glasses controlled by double excitation. Journal of Alloys and Compounds, 2001, 323-324, 336-339.	5.5	34
10	Production and characterization of pure and Cr3+-doped hydroxyapatite for biomedical applications as fluorescent probes. Journal of Materials Science, 2007, 42, 2236-2243.	3.7	33
11	1.5 μm high detectivity quantum counter by energy transfers in diode pumped glassceramics. Revue De Physique Appliquée, 1985, 20, 273-281.	0.4	29
12	Up-conversion yield in glass ceramics containing silver. Journal of Solid State Chemistry, 1987, 68, 314-319.	2.9	27
13	Hydraulic retention time influence on azo dye and sulfate removal during the sequential anaerobic–aerobic treatment of real textile wastewater. Water Science and Technology, 2017, 76, 3319-3327.	2.5	26
14	New lanthanide-doped fluoride-based vitreous materials for laser applications. Journal of Non-Crystalline Solids, 1995, 190, 238-243.	3.1	25
15	Time evolution of the decay of the 5Do level of Eu3+ in glass materials doped with small silver particles. Chemical Physics Letters, 1985, 116, 396-399.	2.6	24
16	Molecular UV dosimeters of lanthanide complex thin films: AFM as a function of ultraviolet exposure. Journal of Alloys and Compounds, 2002, 344, 385-388.	5.5	24
17	Lead–germanate glasses: an easy growth process for silver nanoparticles and their promising applications in photonics and catalysis. RSC Advances, 2017, 7, 41479-41485.	3.6	24
18	Raman and spectroscopic studies of the early steps of crystallization in ZrF4î—,LaF3î—,AlF3î—,ErF3 glass. Journal of Non-Crystalline Solids, 1996, 204, 188-195.	3.1	17

PETRUS A SANTA-CRUZ

#	Article	IF	CITATIONS
19	Printable nanocomposites of polymers and silver nanoparticles for antibacterial devices produced by DoD technology. PLoS ONE, 2018, 13, e0200918.	2.5	16
20	Kinetic study of the thermal decomposition of Eu3+ with β-diketone ligands and 1,10-phenanthroline or 2,2-dipyridine. Journal of Alloys and Compounds, 2002, 344, 101-104.	5.5	15
21	Full-color simulation in a multi-doped glass and controlled quenching of luminescence using Er (III) as a suppressor for a tunable device. Journal of Luminescence, 1997, 72-74, 270-272.	3.1	12
22	Hybrid assembly of double nanofilm as active media for photonic devices. Journal of Luminescence, 2013, 136, 172-177.	3.1	8
23	Printable UV personal dosimeter: sensitivity as a function of DoD parameters and number of layers of a functional photonic ink. Materials Research Express, 2016, 3, 045701.	1.6	8
24	Geração e controle das cores luz primárias em vidros para dispositivos "full color". Quimica Nova, 1998, 21, 372-373.	0.3	7
25	Atomic force microscopy—a visual probe to characterize nanodosimetric devices. Materials Characterization, 2003, 50, 109-116.	4.4	7
26	Synthesis and microstructural studies of Er3+-doped fluorozirconate devitrified glasses. Journal of Non-Crystalline Solids, 1993, 161, 70-76.	3.1	6
27	Model-free kinetics applied for the removal of CTMA+ and TPA+ of the nanostructured hybrid AlMCM-41/ZSM-5 material. Journal of Thermal Analysis and Calorimetry, 2011, 106, 767-771.	3.6	6
28	Luminescence enhancement by gamma irradiation of nanocomposites for UV dosimetry devices. Radiation Measurements, 2014, 71, 201-204.	1.4	6
29	A fluorescent-labeled microcystin-LR terbium cryptate. Journal of the Brazilian Chemical Society, 2006, 17, 243-250.	0.6	6
30	Reasons and implications of retracted articles in Brazil. Transinformacao, 0, 33, .	0.2	6
31	Silver Diffusion and Clustering in Oxyfluoride Glasses Investigated by Molecular Dynamics Simulations. Journal of Computer-Aided Materials Design, 2006, 12, 101-110.	0.7	5
32	Thermal decomposition of lanthanide(III) complexes with 4,4,4-trifluoro-1-phenyl-1,3-butanedione. Journal of Thermal Analysis and Calorimetry, 2007, 87, 887-891.	3.6	5
33	Applications, composites, and devices: general discussion. Faraday Discussions, 2014, 173, 429-443.	3.2	5
34	One-step electrosynthesis of CdS quantum dots stabilized by babassu oil and luminescent films deposited by DoD technology. Materials Chemistry and Physics, 2019, 237, 121832.	4.0	3