
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/836581/publications.pdf Version: 2024-02-01

Снамстниц

#	Article	IF	CITATIONS
1	Scission of C–O and C–C linkages in lignin over RuRe alloy catalyst. Journal of Energy Chemistry, 2022, 67, 492-499.	12.9	41
2	Photocatalytic Oxidation of 5â€Hydroxymethylfurfural Over Interfacialâ€Enhanced Ag/TiO ₂ Under Visible Light Irradiation. ChemSusChem, 2022, 15, e202102158.	6.8	16
3	Fabricating high temperature stable Mo-Co9S8/Al2O3 catalyst for selective hydrodeoxygenation of lignin to arenes. Applied Catalysis B: Environmental, 2022, 305, 121067.	20.2	41
4	Highly Selective Hydrodeoxygenation of Lignin to Naphthenes over Three-Dimensional Flower-like Ni ₂ P Derived from Hydrotalcite. ACS Catalysis, 2022, 12, 1338-1356.	11.2	57
5	Production of Hydroxymethylfurfural Derivatives From Furfural Derivatives via Hydroxymethylation. Frontiers in Bioengineering and Biotechnology, 2022, 10, 851668.	4.1	3
6	Creating Edge Sites within the Basal Plane of a MoS ₂ Catalyst for Substantially Enhanced Hydrodeoxygenation Activity. ACS Catalysis, 2022, 12, 8-17.	11.2	50
7	Transition-metal-free synthesis of pyrimidines from lignin β-O-4 segments via a one-pot multi-component reaction. Nature Communications, 2022, 13, .	12.8	52
8	Rhodiumâ€ŧerpyridine Catalyzed Transfer Hydrogenation of Aromatic Nitro Compounds in Water. Chemistry - an Asian Journal, 2021, 16, 1725-1729.	3.3	5
9	Enhanced lignin biodegradation by consortium of white rot fungi: microbial synergistic effects and product mapping. Biotechnology for Biofuels, 2021, 14, 162.	6.2	34
10	Sustainable Production of Benzylamines from Lignin. Angewandte Chemie - International Edition, 2021, 60, 20666-20671.	13.8	66
11	Sustainable Production of Benzylamines from Lignin. Angewandte Chemie, 2021, 133, 20834-20839.	2.0	4
12	Upgrading of biomass-derived furanic compounds into high-quality fuels involving aldol condensation strategy. Fuel, 2021, 306, 121765.	6.4	36
13	Complete conversion of lignocellulosic biomass to mixed organic acids and ethylene glycol <i>via</i> cascade steps. Green Chemistry, 2021, 23, 2427-2436.	9.0	23
14	Rhodium-terpyridine catalyzed redox-neutral depolymerization of lignin in water. Green Chemistry, 2020, 22, 33-38.	9.0	51
15	Selective production of bio-based <i>para</i> -xylene over an FeO _x -modified Pd/Al ₂ O ₃ catalyst. Green Chemistry, 2020, 22, 4341-4349.	9.0	14
16	Ultrafast Glycerol Conversion to Lactic Acid over Magnetically Recoverable Ni–NiO <i>_x</i> @C Catalysts. Industrial & Engineering Chemistry Research, 2020, 59, 9912-9925.	3.7	26
17	Engineering Co Nanoparticles Supported on Defect MoS _{2–<i>x</i>} for Mild Deoxygenation of Lignin-Derived Phenols to Arenes. ACS Energy Letters, 2020, 5, 1330-1336.	17.4	68
18	Toward Alkylphenols Production: Lignin Depolymerization Coupling with Methoxy Removal over Supported MoS ₂ Catalyst. Industrial & Engineering Chemistry Research, 2020, 59, 17287-17299.	3.7	42

#	Article	IF	CITATIONS
19	Oneâ€Pot Conversion of Lignin into Naphthenes Catalyzed by a Heterogeneous Rhenium Oxideâ€Modified Iridium Compound. ChemSusChem, 2020, 13, 4409-4419.	6.8	55
20	Fabrication of a solid superacid with temperature-regulated silica-isolated biochar nanosheets. Chinese Journal of Catalysis, 2020, 41, 698-709.	14.0	4
21	Cleavage of lignin C–O bonds over a heterogeneous rhenium catalyst through hydrogen transfer reactions. Green Chemistry, 2019, 21, 5556-5564.	9.0	62
22	Green catalytic synthesis of 5-methylfurfural by selective hydrogenolysis of 5-hydroxymethylfurfural over size-controlled Pd nanoparticle catalysts. Catalysis Science and Technology, 2019, 9, 1238-1244.	4.1	54
23	ls oxidation–reduction a real robust strategy for lignin conversion? A comparative study on lignin and model compounds. Green Chemistry, 2019, 21, 803-811.	9.0	46
24	Mild Redox-Neutral Depolymerization of Lignin with a Binuclear Rh Complex in Water. ACS Catalysis, 2019, 9, 4441-4447.	11.2	74
25	Tungsten-based catalysts for lignin depolymerization: the role of tungsten species in C–O bond cleavage. Catalysis Science and Technology, 2019, 9, 2144-2151.	4.1	28
26	Selective cleavage of lignin and lignin model compounds without external hydrogen, catalyzed by heterogeneous nickel catalysts. Chemical Science, 2019, 10, 4458-4468.	7.4	154
27	Ultralow Loading Cobalt-Based Nanocatalyst for Benign and Efficient Aerobic Oxidation of Allylic Alcohols and Biobased Olefins. ACS Sustainable Chemistry and Engineering, 2019, 7, 1901-1908.	6.7	16
28	ReO _{<i>x</i>} /AC-Catalyzed Cleavage of C–O Bonds in Lignin Model Compounds and Alkaline Lignins. ACS Sustainable Chemistry and Engineering, 2019, 7, 208-215.	6.7	47
29	Acid–base synergistic catalysis of biochar sulfonic acid bearing polyamide for microwave-assisted hydrolysis of cellulose in water. Cellulose, 2019, 26, 751-762.	4.9	22
30	Selective Cleavage of Câ^'O Bonds in Lignin Catalyzed by Rhenium(VII) Oxide (Re ₂ O ₇). ChemPlusChem, 2018, 83, 500-505.	2.8	16
31	Selective Production of Renewable <i>para</i> â€Xylene by Tungsten Carbide Catalyzed Atomâ€Economic Cascade Reactions. Angewandte Chemie - International Edition, 2018, 57, 1808-1812.	13.8	39
32	Selective Production of Renewable <i>para</i> â€Xylene by Tungsten Carbide Catalyzed Atomâ€Economic Cascade Reactions. Angewandte Chemie, 2018, 130, 1826-1830.	2.0	7
33	Selective Cleavage of Câ^'O Bonds in Lignin Catalyzed by Rhenium(VII) Oxide (Re2 O7). ChemPlusChem, 2018, 83, 479-479.	2.8	0
34	Tungstenâ€Based Bimetallic Catalysts for Selective Cleavage of Lignin Câ^'O Bonds. ChemCatChem, 2018, 10, 415-421.	3.7	52
35	Unravelling the enigma of lignin ^{OX} : can the oxidation of lignin be controlled?. Chemical Science, 2018, 9, 702-711.	7.4	64
36	Efficient conversion of 5-hydroxymethylfurfural to high-value chemicals by chemo- and bio-catalysis. RSC Advances, 2018, 8, 30875-30886.	3.6	130

#	Article	IF	CITATIONS
37	Effects of Extraction Methods on Structure and Valorization of Corn Stover Lignin by a Pd/C Catalyst. ChemCatChem, 2017, 9, 1135-1143.	3.7	36
38	Valorization of Lignin to Simple Phenolic Compounds over Tungsten Carbide: Impact of Lignin Structure. ChemSusChem, 2017, 10, 523-532.	6.8	141
39	Selective Production of Toluene from Biomassâ€Derived Isoprene and Acrolein. ChemSusChem, 2016, 9, 3434-3440.	6.8	12
40	Tungsten Carbide: A Remarkably Efficient Catalyst for the Selective Cleavage of Lignin Câ^'O Bonds. ChemSusChem, 2016, 9, 3220-3229.	6.8	72
41	Tailored one-pot production of furan-based fuels from fructose in an ionic liquid biphasic solvent system. Chinese Journal of Catalysis, 2015, 36, 1638-1646.	14.0	48
42	Microwave-assisted fast conversion of lignin model compounds and organosolv lignin over methyltrioxorhenium in ionic liquids. RSC Advances, 2015, 5, 84967-84973.	3.6	38
43	Catalytic Transformation of Lignin for the Production of Chemicals and Fuels. Chemical Reviews, 2015, 115, 11559-11624.	47.7	2,200
44	Biomass into chemicals: One-pot production of furan-based diols from carbohydrates via tandem reactions. Catalysis Today, 2014, 234, 59-65.	4.4	107
45	Perovskite hollow nanospheres for the catalytic wet air oxidation of lignin. Chinese Journal of Catalysis, 2013, 34, 1811-1815.	14.0	31
46	Zeolite-promoted hydrolysis of cellulose in ionic liquid, insight into the mutual behavior of zeolite, cellulose and ionic liquid. Applied Catalysis B: Environmental, 2012, 123-124, 333-338.	20.2	100
47	One-pot catalytic hydrocracking of raw woody biomass into chemicals over supported carbide catalysts: simultaneous conversion of cellulose, hemicellulose and lignin. Energy and Environmental Science, 2012, 5, 6383-6390.	30.8	358
48	Selective Production of 1,2â€Propylene Glycol from Jerusalem Artichoke Tuber using Ni–W ₂ C/AC Catalysts. ChemSusChem, 2012, 5, 932-938.	6.8	74
49	Microwave-promoted conversion of concentrated fructose into 5-hydroxymethylfurfural in ionic liquids in the absence of catalysts. Biomass and Bioenergy, 2011, 35, 2013-2017.	5.7	55
50	Production of 5-hydroxymethylfurfural in ionic liquids under high fructose concentration conditions. Carbohydrate Research, 2010, 345, 1846-1850.	2.3	80
51	Direct conversion of glucose and cellulose to 5-hydroxymethylfurfural in ionic liquid under microwave irradiation. Tetrahedron Letters, 2009, 50, 5403-5405.	1.4	279
52	Efficient hydrolysis of chitosan in ionic liquids. Carbohydrate Polymers, 2009, 78, 685-689.	10.2	61
53	Quartz crystal microbalance sensor array for the detection of volatile organic compounds. Talanta, 2009, 78, 711-716.	5.5	62
54	lonic liquids used as QCM coating materials for the detection of alcohols. Sensors and Actuators B: Chemical, 2008, 134, 258-265.	7.8	41

#	Article	IF	CITATIONS
55	Acid in ionic liquid: An efficient system for hydrolysis of lignocellulose. Green Chemistry, 2008, 10, 177-182.	9.0	417
56	Efficient Acid atalyzed Hydrolysis of Cellulose in Ionic Liquid. Advanced Synthesis and Catalysis, 2007, 349, 1847-1850.	4.3	347
57	High Regioselective DielsAlder Reaction of Myrcene with Acrolein Catalyzed by Zinc-Containing Ionic Liquids. Advanced Synthesis and Catalysis, 2005, 347, 137-142.	4.3	37