Chiara F Magnani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8365605/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Coexpression of CD49b and LAG-3 identifies human and mouse T regulatory type 1 cells. Nature Medicine, 2013, 19, 739-746.	30.7	700
2	Differentiation of type 1 T regulatory cells (Tr1) by tolerogenic DC-10 requires the IL-10–dependent ILT4/HLA-G pathway. Blood, 2010, 116, 935-944.	1.4	481
3	Targeting of acute myeloid leukaemia by cytokineâ€induced killer cells redirected with a novel <scp>CD</scp> 123â€specific chimeric antigen receptor. British Journal of Haematology, 2013, 161, 389-401.	2.5	186
4	Balance of Anti-CD123 Chimeric Antigen Receptor Binding Affinity and Density for the Targeting of Acute Myeloid Leukemia. Molecular Therapy, 2017, 25, 1933-1945.	8.2	126
5	Killing of myeloid APCs via HLA class I, CD2 and CD226 defines a novel mechanism of suppression by human Tr1 cells. European Journal of Immunology, 2011, 41, 1652-1662.	2.9	122
6	Sleeping Beauty–engineered CAR T cells achieve antileukemic activity without severe toxicities. Journal of Clinical Investigation, 2020, 130, 6021-6033.	8.2	102
7	Enforced IL-10 Expression Confers Type 1 Regulatory T Cell (Tr1) Phenotype and Function to Human CD4+ T Cells. Molecular Therapy, 2012, 20, 1778-1790.	8.2	78
8	Anti-human CD117 CAR T-cells efficiently eliminate healthy and malignant CD117-expressing hematopoietic cells. Leukemia, 2020, 34, 2688-2703.	7.2	52
9	Immunotherapy of acute leukemia by chimeric antigen receptor-modified lymphocytes using an improved <i>Sleeping Beauty</i> transposon platform. Oncotarget, 2016, 7, 51581-51597.	1.8	43
10	The Past, Present, and Future of Non-Viral CAR T Cells. Frontiers in Immunology, 0, 13, .	4.8	39
11	Role of human leukocyte antigen-G in the induction of adaptive type 1 regulatory T cells. Human Immunology, 2009, 70, 966-969.	2.4	37
12	Preclinical Efficacy and Safety of CD19CAR Cytokine-Induced Killer Cells Transfected with Sleeping Beauty Transposon for the Treatment of Acute Lymphoblastic Leukemia. Human Gene Therapy, 2018, 29, 602-613.	2.7	35
13	Targeting CD33 in Chemoresistant AML Patient-Derived Xenografts by CAR-CIK Cells Modified with an Improved SB Transposon System. Molecular Therapy, 2020, 28, 1974-1986.	8.2	33
14	Transposon-Based CAR T Cells in Acute Leukemias: Where Are We Going?. Cells, 2020, 9, 1337.	4.1	32
15	Acute myeloid leukemia and novel biological treatments: Monoclonal antibodies and cell-based gene-modified immune effectors. Immunology Letters, 2013, 155, 43-46.	2.5	20
16	Engineered T cells towards TNFRSF13C (<scp>BAFFR</scp>): a novel strategy to efficiently target B ell acute lymphoblastic leukaemia. British Journal of Haematology, 2018, 182, 939-943.	2.5	19
17	Therapeutic and Diagnostic Applications of Minor Histocompatibility Antigen HA-1 and HA-2 Disparities in Allogeneic Hematopoietic Stem Cell Transplantation: A Survey of Different Populations. Biology of Blood and Marrow Transplantation, 2006, 12, 95-101.	2.0	16
18	Donor-derived CD19-targeted T cells in allogeneic transplants. Current Opinion in Hematology, 2015, 22, 497-502.	2.5	16

CHIARA F MAGNANI

#	Article	IF	CITATIONS
19	Redirecting T cells with Chimeric Antigen Receptor (CAR) for the treatment of childhood acute lymphoblastic leukemia. Journal of Autoimmunity, 2017, 85, 141-152.	6.5	14
20	Acquired glucose sensitivity of k-ras transformed fibroblasts. Biochemical Society Transactions, 2005, 33, 297-299.	3.4	10
21	<scp>TNFRSF</scp> 13C (<scp>BAFFR</scp>) positive blasts persist after early treatment and at relapse in childhood Bâ€cell precursor acute lymphoblastic leukaemia. British Journal of Haematology, 2018, 182, 434-436.	2.5	8
22	Advanced Targeted, Cell and Gene-Therapy Approaches for Pediatric Hematological Malignancies: Results and Future Perspectives. Frontiers in Oncology, 2013, 3, 106.	2.8	5
23	Donor-Derived CD19 CAR Cytokine Induced Killer (CIK) Cells Engineered with Sleeping Beauty Transposon for Relapsed B-Cell Acute Lymphoblastic Leukemia (B-ALL). Blood, 2019, 134, 200-200.	1.4	5
24	Unraveling the Efficacy and Safety Profiles of Anti-CD123 Chimeric Antigen Receptors (CARs) in a Model of Acute Myeloid Leukemia Immunotherapy By Investigating CAR Binding Affinity and Density Variables. Blood, 2015, 126, 1359-1359.	1.4	4
25	"Switchable chimeric antigen receptor T cells: a novel universal chimeric antigen receptor platform for a safe control of T-cell activation― Translational Cancer Research, 2016, 5, S174-S177.	1.0	3
26	Specific Targeting of Acute Myeloid Leukemia By the Use of Non-Virally Engineered CIK (Cytokine-Induced Killer) Cells Expressing the Anti-CD33 Chimeric Antigen Receptor (CAR). Blood, 2018, 132, 2201-2201.	1.4	2
27	Targeting of Acute Myeloid Leukemia by Cytokine-Induced Killer Cells Redirected with a Novel CD123-Specific Chimeric Antigen Receptor Blood, 2012, 120, 3010-3010.	1.4	1
28	Low-Dose Lenalidomide Improves CAR-Based Immunotherapy In CLL By Reverting T-Cell Defects In Vivo. Blood, 2013, 122, 4171-4171.	1.4	1
29	Balance of Anti-CD123 Chimeric Antigen Receptor (CAR) Binding Affinity and Density for the Treatment of Acute Myeloid Leukemia. Blood, 2016, 128, 2163-2163.	1.4	1
30	Sleeping Beauty Modified CAR+ Lymphocytes Engraft and Exhibit Anti-Tumor Activity in Patient-Derived Xenograft Models of Acute Lymphoblastic Leukemia. Blood, 2016, 128, 4022-4022.	1.4	1
31	Anti-CD117 CAR T Cells Incorporating a Safety Switch Eradicate Acute Myeloid Leukemia and Deplete Human Hematopoietic Stem Cells. Blood, 2021, 138, 2808-2808.	1.4	1
32	Stable Expression Of Chimeric Antigen Receptors (CARs) By Sleeping Beauty-Mediated Gene Transfer and Efficient Expansion Of Leukemia-Specific Cytokine-Induced Killer (CIK) Cells. Blood, 2013, 122, 1663-1663.	1.4	0
33	Clinical-Grade Transduction of Allogeneic Cytokine Induced Killer (CIK) Cells with CD19 Chimeric Antigen Receptor (CAR) Using Sleeping Beauty (SB) Transposon: Successful GMP-Compliant Manufacturing for Clinical Applications, Blood, 2018, 132, 196-196	1.4	О