List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/836492/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Separate visual pathways for perception and action. Trends in Neurosciences, 1992, 15, 20-25.	4.2	5,452
2	A neurological dissociation between perceiving objects and grasping them. Nature, 1991, 349, 154-156.	13.7	1,478
3	Two visual systems re-viewed. Neuropsychologia, 2008, 46, 774-785.	0.7	1,158
4	Size-contrast illusions deceive the eye but not the hand. Current Biology, 1995, 5, 679-685.	1.8	1,144
5	Large adjustments in visually guided reaching do not depend on vision of the hand or perception of target displacement. Nature, 1986, 320, 748-750.	13.7	1,039
6	Visually guided grasping produces fMRI activation in dorsal but not ventral stream brain areas. Experimental Brain Research, 2003, 153, 180-189.	0.7	636
7	Differences in the visual control of pantomimed and natural grasping movements. Neuropsychologia, 1994, 32, 1159-1178.	0.7	603
8	Ventral occipital lesions impair object recognition but not objectâ€directed grasping: an fMRI study. Brain, 2003, 126, 2463-2475.	3.7	574
9	Separate neural pathways for the visual analysis of object shape in perception and prehension. Current Biology, 1994, 4, 604-610.	1.8	513
10	An evolving view of duplex vision: separate but interacting cortical pathways for perception and action. Current Opinion in Neurobiology, 2004, 14, 203-211.	2.0	426
11	FMRI evidence for a 'parietal reach region' in the human brain. Experimental Brain Research, 2003, 153, 140-145.	0.7	410
12	The Effect of Pictorial Illusion on Prehension and Perception. Journal of Cognitive Neuroscience, 1998, 10, 122-136.	1.1	368
13	Haptic study of three-dimensional objects activates extrastriate visual areas. Neuropsychologia, 2002, 40, 1706-1714.	0.7	367
14	The objects of action and perception. Cognition, 1998, 67, 181-207.	1.1	358
15	A kinematic analysis of reaching and grasping movements in a patient recovering from optic ataxia. Neuropsychologia, 1991, 29, 803-809.	0.7	339
16	Human fMRI evidence for the neural correlates of preparatory set. Nature Neuroscience, 2002, 5, 1345-1352.	7.1	319
17	Transforming vision into action. Vision Research, 2011, 51, 1567-1587.	0.7	291
18	Chapter 28 Visual pathways to perception and action. Progress in Brain Research, 1993, 95, 317-337.	0.9	290

#	Article	IF	CITATIONS
19	Functional Magnetic Resonance Imaging Reveals the Neural Substrates of Arm Transport and Grip Formation in Reach-to-Grasp Actions in Humans. Journal of Neuroscience, 2010, 30, 10306-10323.	1.7	289
20	The organization of eye and limb movements during unrestricted reaching to targets in contralateral and ipsilateral visual space. Experimental Brain Research, 1985, 60, 159-78.	0.7	283
21	A Comparison of Frontoparietal fMRI Activation During Anti-Saccades and Anti-Pointing. Journal of Neurophysiology, 2000, 84, 1645-1655.	0.9	283
22	Grasping after a Delay Shifts Size-Scaling from Absolute to Relative Metrics. Journal of Cognitive Neuroscience, 2000, 12, 856-868.	1.1	278
23	The dissociation between perception and action in the Ebbinghaus illusion. Current Biology, 2001, 11, 177-181.	1.8	277
24	Attention to Form or Surface Properties Modulates Different Regions of Human Occipitotemporal Cortex. Cerebral Cortex, 2007, 17, 713-731.	1.6	274
25	Perceptual illusion and the real-time control of action. Spatial Vision, 2003, 16, 243-254.	1.4	259
26	Differential Effects of Viewpoint on Object-Driven Activation in Dorsal and Ventral Streams. Neuron, 2002, 35, 793-801.	3.8	258
27	The role of binocular vision in prehension: a kinematic analysis. Vision Research, 1992, 32, 1513-1521.	0.7	256
28	What is the best fixation target? The effect of target shape on stability of fixational eye movements. Vision Research, 2013, 76, 31-42.	0.7	256
29	An fMRI study of the selective activation of human extrastriate form vision areas by radial and concentric gratings. Current Biology, 2000, 10, 1455-1458.	1.8	237
30	The effects of lesions of the superior colliculus on locomotor orientation and the orienting reflex in the rat. Brain Research, 1975, 88, 243-261.	1.1	236
31	The fusiform face area is not sufficient for face recognition: Evidence from a patient with dense prosopagnosia and no occipital face area. Neuropsychologia, 2006, 44, 594-609.	0.7	226
32	The Role of Surface Information in Object Recognition: Studies of a Visual Form Agnosic and Normal Subjects. Perception, 1994, 23, 1457-1481.	0.5	198
33	Visual control of action but not perception requires analytical processing of object shape. Nature, 2003, 426, 664-667.	13.7	197
34	The Nature and Limits of Orientation and Pattern Processing Supporting Visuomotor Control in a Visual Form Agnosic. Journal of Cognitive Neuroscience, 1994, 6, 46-56.	1.1	178
35	Active manual control of object views facilitates visual recognition. Current Biology, 1999, 9, 1315-1318.	1.8	177
36	Neural Correlates of Natural Human Echolocation in Early and Late Blind Echolocation Experts. PLoS ONE, 2011, 6, e20162.	1.1	174

#	Article	IF	CITATIONS
37	Two distinct modes of control for object-directed action. Progress in Brain Research, 2004, 144, 131-144.	0.9	168
38	The effects of delay on the kinematics of grasping. Experimental Brain Research, 1999, 126, 109-116.	0.7	167
39	The involvement of the "fusiform face area―in processing facial expression. Neuropsychologia, 2005, 43, 1645-1654.	0.7	164
40	The effects of visual object priming on brain activation before and after recognition. Current Biology, 2000, 10, 1017-1024.	1.8	161
41	Frames of Reference for Perception and Action in the Human Visual System. Neuroscience and Biobehavioral Reviews, 1998, 22, 161-172.	2.9	159
42	A double dissociation between sensitivity to changes in object identity and object orientation in the ventral and dorsal visual streams: A human fMRI study. Neuropsychologia, 2006, 44, 218-228.	0.7	156
43	Living in A Material World: How Visual Cues to Material Properties Affect the Way That We Lift Objects and Perceive Their Weight. Journal of Neurophysiology, 2009, 102, 3111-3118.	0.9	152
44	Hemispheric Specialization for the Visual Control of Action Is Independent of Handedness. Journal of Neurophysiology, 2006, 95, 3496-3501.	0.9	149
45	Visual pathways supporting perception and action in the primate cerebral cortex. Current Opinion in Neurobiology, 1993, 3, 578-585.	2.0	145
46	Independent effects of pictorial displays on perception and action. Vision Research, 2000, 40, 1597-1607.	0.7	143
47	Reaching for the unknown: Multiple target encoding and real-time decision-making in a rapid reach task. Cognition, 2010, 116, 168-176.	1.1	140
48	Visually Guided Pecking in the Pigeon <i>(Columba livia)</i> . Brain, Behavior and Evolution, 1983, 22, 22-41.	0.9	136
49	Flexible Retinotopy: Motion-Dependent Position Coding in the Visual Cortex. Science, 2003, 302, 878-881.	6.0	136
50	Superior performance for visually guided pointing in the lower visual field. Experimental Brain Research, 2001, 137, 303-308.	0.7	133
51	The influence of visual motion on fast reaching movements to a stationary object. Nature, 2003, 423, 869-873.	13.7	132
52	Kinematic analysis of limb movements in neuropsychological research: Subtle deficits and recovery of function Canadian Journal of Psychology, 1990, 44, 180-195.	0.8	127
53	FMRI Reveals a Dissociation between Grasping and Perceiving the Size of Real 3D Objects. PLoS ONE, 2007, 2, e424.	1.1	125
54	Retinotopic activity in V1 reflects the perceived and not the retinal size of an afterimage. Nature Neuroscience, 2012, 15, 540-542.	7.1	124

#	Article	IF	CITATIONS
55	Bringing the real world into the fMRI scanner: Repetition effects for pictures versus real objects. Scientific Reports, 2011, 1, 130.	1.6	123
56	A Double Dissociation Between Action and Perception in the Context of Visual Illusions. Psychological Science, 2008, 19, 221-225.	1.8	121
57	fMRI Activation in the Human Frontal Eye Field Is Correlated With Saccadic Reaction Time. Journal of Neurophysiology, 2005, 94, 605-611.	0.9	116
58	Differences in perceived shape from shading correlate with activity in early visual areas. Current Biology, 1997, 7, 144-147.	1.8	115
59	Direct effects of prismatic lenses on visuomotor control: an eventâ€related functional MRI study. European Journal of Neuroscience, 2008, 28, 1696-1704.	1.2	112
60	How (and why) the visual control of action differs from visual perception. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20140337.	1.2	109
61	The removal of binocular cues disrupts the calibration of grasping in patients with visual form agnosia. Experimental Brain Research, 1997, 116, 113-121.	0.7	108
62	fMR-adaptation reveals separate processing regions for the perception of form and texture in the human ventral stream. Experimental Brain Research, 2009, 192, 391-405.	0.7	108
63	Distance estimation in the mongolian gerbil: The role of dynamic depth cues. Behavioural Brain Research, 1984, 14, 29-39.	1.2	107
64	The Effects of Time and Distance on Accuracy of Target-Directed Locomotion. Journal of Motor Behavior, 1988, 20, 399-415.	0.5	107
65	Reaching to ipsilateral or contralateral targets: within-hemisphere visuomotor processing cannot explain hemispatial differences in motor control. Experimental Brain Research, 1996, 112, 496-504.	0.7	105
66	The role of visual feedback of hand position in the control of manual prehension. Experimental Brain Research, 1999, 125, 281-286.	0.7	103
67	Recovery of fMRI Activation in Motion Area MT Following Storage of the Motion Aftereffect. Journal of Neurophysiology, 1999, 81, 388-393.	0.9	102
68	Representation of Object Weight in Human Ventral Visual Cortex. Current Biology, 2014, 24, 1866-1873.	1.8	102
69	Dissociation of perception and action unmasked by the hollow-face illusion. Brain Research, 2006, 1080, 9-16.	1.1	101
70	Action without perception in human vision. Cognitive Neuropsychology, 2008, 25, 891-919.	0.4	100
71	Comparison of Memory- and Visually Guided Saccades Using Event-Related fMRI. Journal of Neurophysiology, 2004, 91, 873-889.	0.9	99
72	Scratching Beneath the Surface: New Insights into the Functional Properties of the Lateral Occipital Area and Parahippocampal Place Area. Journal of Neuroscience, 2011, 31, 8248-8258.	1.7	96

#	Article	IF	CITATIONS
73	Dissociating Arbitrary Stimulus-Response Mapping from Movement Planning during Preparatory Period: Evidence from Event-Related Functional Magnetic Resonance Imaging. Journal of Neuroscience, 2006, 26, 2704-2713.	1.7	95
74	Independent Processing of Form, Colour, and Texture in Object Perception. Perception, 2008, 37, 57-78.	0.5	95
75	Dual routes to action: contributions of the dorsal and ventral streams to adaptive behavior. Progress in Brain Research, 2005, 149, 269-283.	0.9	94
76	Preserved visual imagery in visual form agnosia. Neuropsychologia, 1995, 33, 1383-1394.	0.7	93
77	When two eyes are better than one in prehension: monocular viewing and end-point variance. Experimental Brain Research, 2004, 158, 317-27.	0.7	93
78	Practice makes perfect, but only with the right hand: Sensitivity to perceptual illusions with awkward grasps decreases with practice in the right but not the left hand. Neuropsychologia, 2008, 46, 624-631.	0.7	89
79	The role of image size and retinal motion in the computation of absolute distance by the Mongolian gerbil (Meriones unguiculatus). Vision Research, 1990, 30, 399-413.	0.7	86
80	Does a monocularly presented size-contrast illusion influence grip aperture?. Neuropsychologia, 1998, 36, 491-497.	0.7	85
81	Manipulating and recognizing virtual objects: Where the action is Canadian Journal of Experimental Psychology, 2001, 55, 111-120.	0.7	85
82	Left handedness does not extend to visually guided precision grasping. Experimental Brain Research, 2007, 182, 275-279.	0.7	85
83	Hemispheric differences in motor control. Behavioural Brain Research, 1988, 30, 203-214.	1.2	84
84	Oral asymmetries during verbal and non-verbal movements of the mouth. Neuropsychologia, 1987, 25, 375-396.	0.7	83
85	Lifting without Seeing: The Role of Vision in Perceiving and Acting upon the Size Weight Illusion. PLoS ONE, 2010, 5, e9709.	1.1	83
86	Getting a grip on reality: Grasping movements directed to real objects and images rely on dissociable neural representations. Cortex, 2018, 98, 34-48.	1.1	81
87	Visuomotor control: Where does vision end and action begin?. Current Biology, 1998, 8, R489-R491.	1.8	80
88	Behavioral and Neuroimaging Evidence for a Contribution of Color and Texture Information to Scene Classification in a Patient with Visual Form Agnosia. Journal of Cognitive Neuroscience, 2004, 16, 955-965.	1.1	80
89	Hand preference for precision grasping predicts language lateralization. Neuropsychologia, 2009, 47, 3182-3189.	0.7	80
90	Dissociable neural mechanisms for determining the perceived heaviness of objects and the predicted weight of objects during lifting: An fMRI investigation of the size–weight illusion. NeuroImage, 2009, 44, 200-212.	2.1	79

#	Article	IF	CITATIONS
91	Dissociation between two modes of spatial processing by a visual form agnosic. NeuroReport, 1995, 6, 1893-1896.	0.6	78
92	Echolocation in humans: an overview. Wiley Interdisciplinary Reviews: Cognitive Science, 2016, 7, 382-393.	1.4	78
93	A temporal analysis of grasping in the Ebbinghaus illusion: planning versus online control. Experimental Brain Research, 2002, 144, 275-280.	0.7	76
94	Visually Guided Reaching Depends on Motion Area MT+. Cerebral Cortex, 2007, 17, 2644-2649.	1.6	76
95	fMRI reveals a lower visual field preference for hand actions in human superior parieto-occipital cortex (SPOC) and precuneus. Cortex, 2013, 49, 2525-2541.	1.1	73
96	Peripheral vision for perception and action. Experimental Brain Research, 2005, 165, 97-106.	0.7	72
97	The effects of landmarks on the performance of delayed and real-time pointing movements. Experimental Brain Research, 2005, 167, 335-344.	0.7	69
98	Why color synesthesia involves more than color. Trends in Cognitive Sciences, 2009, 13, 288-292.	4.0	69
99	Visual sampling after lesions of the superior colliculus in rats Journal of Comparative and Physiological Psychology, 1979, 93, 1015-1023.	1.8	68
100	Interactions between the processing of gaze direction and facial expression. Vision Research, 2005, 45, 1191-1200.	0.7	67
101	Category-specific neural processing for naming pictures of animals and naming pictures of tools: An ALE meta-analysis. Neuropsychologia, 2010, 48, 409-418.	0.7	67
102	Obstacle avoidance during locomotion is unaffected in a patient with visual form agnosia. NeuroReport, 1996, 8, 165-168.	0.6	66
103	Understanding the contribution of binocular vision to the control of adaptive locomotion. Experimental Brain Research, 2002, 142, 551-561.	0.7	66
104	The McCollough effect reveals orientation discrimination in a case of cortical blindness. Current Biology, 1995, 5, 545-551.	1.8	64
105	A neurological dissociation between shape from shading and shape from edges. Behavioural Brain Research, 1996, 76, 117-125.	1.2	64
106	Orientation sensitivity to graspable objects: An fMRI adaptation study. NeuroImage, 2007, 36, T87-T93.	2.1	64
107	Selective, Non-lateralized Impairment of Motor Imagery Following Right Parietal Damage. Neurocase, 2002, 8, 194-204.	0.2	63
108	Grasping versus pointing and the differential use of visual feedback. Human Movement Science, 1993, 12, 219-234.	0.6	60

#	Article	IF	CITATIONS
109	The Two Visual Systems Hypothesis: New Challenges and Insights from Visual form Agnosic Patient DF. Frontiers in Neurology, 2014, 5, 255.	1.1	60
110	Grasping two-dimensional images and three-dimensional objects in visual-form agnosia. Experimental Brain Research, 2002, 144, 262-267.	0.7	59
111	An investigation of auditory contagious yawning. Cognitive, Affective and Behavioral Neuroscience, 2009, 9, 335-342.	1.0	59
112	Pointing to places and spaces in a patient with visual form agnosia. Neuropsychologia, 2006, 44, 1584-1594.	0.7	58
113	Missing in action: the effect of obstacle position and size on avoidance while reaching. Experimental Brain Research, 2008, 191, 83-97.	0.7	57
114	Converging evidence for diverging pathways: Neuropsychology and psychophysics tell the same story. Vision Research, 2011, 51, 804-811.	0.7	57
115	Two visual pathways – Where have they taken us and where will they lead in future?. Cortex, 2018, 98, 283-292.	1.1	57
116	Probing Unconscious Visual Processing with the McCollough Effect. Consciousness and Cognition, 1998, 7, 494-519.	0.8	56
117	A haptic size-contrast illusion affects size perception but not grasping. Experimental Brain Research, 2003, 153, 253-259.	0.7	55
118	The role of head movements in the discrimination of 2-D shape by blind echolocation experts. Attention, Perception, and Psychophysics, 2014, 76, 1828-1837.	0.7	55
119	Orientation Discrimination in a Visual Form Agnosic: Evidence from the McCollough Effect. Psychological Science, 1991, 2, 331-335.	1.8	54
120	What Role Does "Elongation―Play in "Tool-Specific―Activation and Connectivity in the Dorsal and Ventral Visual Streams?. Cerebral Cortex, 2018, 28, 1117-1131.	1.6	54
121	Grasping future events: explicit knowledge of the availability of visual feedback fails to reliably influence prehension. Experimental Brain Research, 2008, 188, 603-611.	0.7	53
122	One to Four, and Nothing More. Psychological Science, 2011, 22, 803-811.	1.8	53
123	Shape-specific activation of occipital cortex in an early blind echolocation expert. Neuropsychologia, 2013, 51, 938-949.	0.7	53
124	Abnormal face identity coding in the middle fusiform gyrus of two brain-damaged prosopagnosic patients. Neuropsychologia, 2009, 47, 2584-2592.	0.7	51
125	Decoding Visual Object Categories in Early Somatosensory Cortex. Cerebral Cortex, 2015, 25, 1020-1031.	1.6	51
126	Transient visual pathway critical for normal development of primate grasping behavior. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 1364-1369.	3.3	51

#	Article	IF	CITATIONS
127	Target Selection for Reaching and Saccades Share a Similar Behavioral Reference Frame in the Macaque. Journal of Neurophysiology, 2003, 89, 1456-1466.	0.9	50
128	Enhanced auditory spatial localization in blind echolocators. Neuropsychologia, 2015, 67, 35-40.	0.7	50
129	The relationship between fMRI adaptation and repetition priming. NeuroImage, 2006, 32, 1432-1440.	2.1	49
130	The role of vision in detecting and correcting fingertip force errors during object lifting. Journal of Vision, 2011, 11, 4-4.	0.1	49
131	Transient visual responses reset the phase of lowâ€frequency oscillations in the skeletomotor periphery. European Journal of Neuroscience, 2015, 42, 1919-1932.	1.2	49
132	The dorsal "action―pathway. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2018, 151, 449-466.	1.0	48
133	Left-sided oral asymmetries in spontaneous but not posed smiles. Neuropsychologia, 1988, 26, 823-832.	0.7	47
134	Repetition suppression in occipital–temporal visual areas is modulated by physical rather than semantic features of objects. NeuroImage, 2008, 41, 130-144.	2.1	47
135	No evidence for visuomotor priming in a visually guided action task. Neuropsychologia, 2005, 43, 216-226.	0.7	46
136	Effector-specific fields for motor preparation in the human frontal cortex. NeuroImage, 2007, 34, 1209-1219.	2.1	46
137	Dual-task interference is greater in delayed grasping than in visually guided grasping. Journal of Vision, 2007, 7, 5.	0.1	46
138	Crinkling and crumpling: An auditory fMRI study of material properties. NeuroImage, 2008, 43, 368-378.	2.1	46
139	Observing object lifting errors modulates cortico-spinal excitability and improves object lifting performance. Cortex, 2014, 50, 115-124.	1.1	46
140	The intermanual transfer of anticipatory force control in precision grip lifting is not influenced by the perception of weight. Experimental Brain Research, 2008, 185, 319-329.	0.7	45
141	The material–weight illusion induced by expectations alone. Attention, Perception, and Psychophysics, 2011, 73, 36-41.	0.7	45
142	The influence of competing perceptual and motor priors in the context of the size–weight illusion. Experimental Brain Research, 2010, 205, 283-288.	0.7	44
143	The two-visual-systems hypothesis and the perspectival features of visual experience. Consciousness and Cognition, 2015, 35, 225-233.	0.8	44
144	"Real-time―obstacle avoidance in the absence of primary visual cortex. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 15996-16001.	3.3	43

#	Article	IF	CITATIONS
145	Enhanced detection of visual targets on the hand and familiar tools. Neuropsychologia, 2009, 47, 2454-2463.	0.7	42
146	Contribution of visual and proprioceptive information to the precision of reaching movements. Experimental Brain Research, 2010, 202, 15-32.	0.7	42
147	Grasping the non-conscious: Preserved grip scaling to unseen objects for immediate but not delayed grasping following a unilateral lesion to primary visual cortex. Vision Research, 2011, 51, 908-924.	0.7	42
148	A hand in blindsight: Hand placement near target improves size perception in the blind visual field. Neuropsychologia, 2008, 46, 786-802.	0.7	41
149	Motor Force Field Learning Influences Visual Processing of Target Motion. Journal of Neuroscience, 2007, 27, 9975-9983.	1.7	40
150	Overlapping neural circuits for visual attention and eye movements in the human cerebellum. Neuropsychologia, 2015, 69, 9-21.	0.7	40
151	Repetition priming and the time course of object recognition. NeuroReport, 1999, 10, 1019-1023.	0.6	39
152	Visual motion due to eye movements helps guide the hand. Experimental Brain Research, 2005, 162, 394-400.	0.7	39
153	Integration of haptic and visual size cues in perception and action revealed through cross-modal conflict. Experimental Brain Research, 2010, 201, 863-873.	0.7	39
154	Neural correlates of motion processing through echolocation, source hearing, and vision in blind echolocation experts and sighted echolocation novices. Journal of Neurophysiology, 2014, 111, 112-127.	0.9	39
155	Updating the programming of a precision grip is a function of recent history of available feedback. Experimental Brain Research, 2009, 194, 619-629.	0.7	38
156	Mental blocks: fMRI reveals top-down modulation of early visual cortex when obstacles interfere with grasp planning. Neuropsychologia, 2011, 49, 1703-1717.	0.7	38
157	Separate visual systems for perception and action: a framework for understanding cortical visual impairment. Developmental Medicine and Child Neurology, 2013, 55, 9-12.	1.1	38
158	DF's visual brain in action: The role of tactile cues. Neuropsychologia, 2014, 55, 41-50.	0.7	38
159	Effects of material properties and object orientation on precision grip kinematics. Experimental Brain Research, 2016, 234, 2253-2265.	0.7	38
160	Blindsight: A conscious route to unconscious vision. Current Biology, 2000, 10, R64-R67.	1.8	37
161	Neural Substrates of Visual Spatial Coding and Visual Feedback Control for Hand Movements in Allocentric and Target-Directed Tasks. Frontiers in Human Neuroscience, 2011, 5, 92.	1.0	37
162	The role of apparent size in building- and object-specific regions of ventral visual cortex. Brain Research, 2011, 1388, 109-122.	1.1	37

#	Article	IF	CITATIONS
163	Are visual texture-selective areas recruited during haptic texture discrimination?. NeuroImage, 2014, 94, 129-137.	2.1	37
164	Now you see it, now you don't: How delaying an action system can transform a theory. Behavioral and Brain Sciences, 1992, 15, 335-336.	0.4	36
165	The lateralâ€occipital and the inferiorâ€frontal cortex play different roles during the naming of visually presented objects. Human Brain Mapping, 2009, 30, 3851-3864.	1.9	36
166	The Effects of Instructions to Subjects on the Programming of Visually Directed Reaching Movements. Journal of Motor Behavior, 1989, 21, 5-19.	0.5	35
167	Plans for action. Behavioral and Brain Sciences, 2004, 27, .	0.4	35
168	Programs for action in superior parietal cortex: A triple-pulse TMS investigation. Neuropsychologia, 2011, 49, 2391-2399.	0.7	34
169	Does grasping in patient D.F. depend on vision?. Trends in Cognitive Sciences, 2012, 16, 256-257.	4.0	34
170	Size Matters: A Single Representation Underlies Our Perceptions of Heaviness in the Size-Weight Illusion. PLoS ONE, 2013, 8, e54709.	1.1	34
171	Selective, Non-lateralized Impairment of Motor Imagery Following Right Parietal Damage. Neurocase, 2002, 8, 194-204.	0.2	34
172	Short-term motor plasticity revealed in a visuomotor decision-making task. Behavioural Brain Research, 2010, 214, 130-134.	1.2	33
173	Perceived Size Change Induced by Nonvisual Signals in Darkness: The Relative Contribution of Vergence and Proprioception. Journal of Neuroscience, 2013, 33, 16915-16923.	1.7	33
174	Visual salience dominates early visuomotor competition in reaching behavior. Journal of Vision, 2011, 11, 16-16.	0.1	32
175	Real-time vision, tactile cues, and visual form agnosia: removing haptic feedback from a "natural― grasping task induces pantomime-like grasps. Frontiers in Human Neuroscience, 2015, 9, 216.	1.0	32
176	Afterimage size is modulated by size-contrast illusions. Journal of Vision, 2012, 12, 18-18.	0.1	31
177	Naming and grasping common objects: a priming study. Experimental Brain Research, 2004, 159, 55-64.	0.7	30
178	Measuring unconscious actions in action-blindsight: exploring the kinematics of pointing movements to targets in the blind field of two patients with cortical hemianopia. Neuropsychologia, 2003, 41, 1068-1081.	0.7	28
179	Integration of visual and auditory information for hand actions: preliminary evidence for the contribution of natural sounds to grasping. Experimental Brain Research, 2011, 209, 365-374.	0.7	27
180	Bimanual Interference in Rapid Discrete Movements Is Task Specific and Occurs at Multiple Levels of Processing. Journal of Neurophysiology, 2005, 94, 1861-1868.	0.9	26

#	Article	IF	CITATIONS
181	FMRI adaptation during performance of learned arbitrary visuomotor conditional associations. NeuroImage, 2009, 48, 696-706.	2.1	26
182	The Size-Weight Illusion Induced Through Human Echolocation. Psychological Science, 2015, 26, 237-242.	1.8	26
183	Rapid decrement in the effects of the Ponzo display dissociates action and perception. Psychonomic Bulletin and Review, 2016, 23, 1157-1163.	1.4	26
184	Vision for Perception and Vision for Action in the Primate Brain. Novartis Foundation Symposium, 1998, 218, 21-44.	1.2	26
185	Vision in the palm of your hand. Neuropsychologia, 2009, 47, 1621-1626.	0.7	25
186	Seeing all the obstacles in your way: the effect of visual feedback and visual feedback schedule on obstacle avoidance while reaching. Experimental Brain Research, 2010, 202, 363-375.	0.7	25
187	Differences in the Effects of Crowding on Size Perception and Grip Scaling in Densely Cluttered 3-D Scenes. Psychological Science, 2015, 26, 58-69.	1.8	25
188	Preserved Haptic Shape Processing after Bilateral LOC Lesions. Journal of Neuroscience, 2015, 35, 13745-13760.	1.7	24
189	More than blindsight: Case report of a child with extraordinary visual capacity following perinatal bilateral occipital lobe injury. Neuropsychologia, 2019, 128, 178-186.	0.7	24
190	Distorting visual space with sound. Vision Research, 2006, 46, 1553-1558.	0.7	23
191	Beyond distance and direction: The brain represents target locations non-metrically. Journal of Vision, 2010, 10, 1-27.	0.1	23
192	Perception of the Mccollough Effect Correlates with Activity in Extrastriate Cortex: A Functional Magnetic Resonance Imaging Study. Psychological Science, 1999, 10, 444-448.	1.8	22
193	Time Flies When We Intend to Act: Temporal Distortion in a Go/No-Go Task. Journal of Neuroscience, 2015, 35, 5023-5029.	1.7	22
194	Sensitivity to biomechanical limitations during postural decision-making depends on the integrity of posterior superior parietal cortex. Cortex, 2017, 97, 202-220.	1.1	22
195	Obstacle avoidance during online corrections. Journal of Vision, 2010, 10, 17-17.	0.1	21
196	Handedness, laterality and the size-weight illusion. Cortex, 2012, 48, 1342-1350.	1.1	21
197	Parahippocampal cortex is involved in material processing via echoes in blind echolocation experts. Vision Research, 2015, 109, 139-148.	0.7	21
198	Face Inversion Reduces the Persistence of Global Form and Its Neural Correlates. PLoS ONE, 2011, 6, e18705.	1.1	21

#	Article	IF	CITATIONS
199	Chapter 20 Different spaces and different times for perception and action. Progress in Brain Research, 2001, 134, 313-331.	0.9	20
200	A blind human expert echolocator shows size constancy for objects perceived by echoes. Neurocase, 2015, 21, 465-470.	0.2	20
201	The influence of visual feedback from the recent past on the programming of grip aperture is grasp-specific, shared between hands, and mediated by sensorimotor memory not task set. Cognition, 2015, 138, 49-63.	1.1	20
202	Patient DF's visual brain in action: Visual feedforward control in visual form agnosia. Vision Research, 2015, 110, 265-276.	0.7	20
203	The Sander parallelogram illusion dissociates action and perception despite control for the litany of past confounds. Cortex, 2018, 98, 163-176.	1.1	20
204	The Effect of Learned Perceptual Associations on Visuomotor Programming Varies with Kinematic Demands. Journal of Cognitive Neuroscience, 2000, 12, 950-964.	1.1	19
205	Grasping without vision: Time normalizing grip aperture profiles yields spurious grip scaling to target size. Neuropsychologia, 2013, 51, 1878-1887.	0.7	19
206	Counting on the motor system: Rapid action planning reveals the format- and magnitude-dependent extraction of numerical quantity. Journal of Vision, 2014, 14, 30-30.	0.1	19
207	Variability-based Garner interference for perceptual estimations but not for grasping. Experimental Brain Research, 2014, 232, 1751-1758.	0.7	19
208	Real and illusory issues in the illusion debate (Why two things are sometimes better than one): Commentary on Kopiske etÂal. (2016). Cortex, 2017, 88, 205-209.	1.1	19
209	Psychophysical and neuroimaging responses to moving stimuli in a patient with the Riddoch phenomenon due to bilateral visual cortex lesions. Neuropsychologia, 2019, 128, 150-165.	0.7	19
210	The Visual Pathways Mediating Perception and Prehension. , 1996, , 15-31.		19
211	A model of the coupling between grip aperture and hand transport during human prehension. Experimental Brain Research, 2005, 167, 301-304.	0.7	18
212	Voice recognition and the posterior cingulate: An fMRI study of prosopagnosia. Journal of Neuropsychology, 2008, 2, 269-286.	0.6	18
213	Two visual streams: Interconnections do not imply duplication of function. Cognitive Neuroscience, 2010, 1, 65-68.	0.6	18
214	Connecting the Dots. Psychological Science, 2013, 24, 1456-1465.	1.8	18
215	Changing the Real Viewing Distance Reveals the Temporal Evolution of Size Constancy in Visual Cortex. Current Biology, 2019, 29, 2237-2243.e4.	1.8	18
216	FMRI-adaptation to highly-rendered color photographs of animals and manipulable artifacts during a classification task. NeuroImage, 2012, 59, 2941-2951.	2.1	17

#	Article	IF	CITATIONS
217	Explicit knowledge about the availability of visual feedback affects grasping with the left but not the right hand. Experimental Brain Research, 2014, 232, 293-302.	0.7	17
218	Weightlifting exercise and the size–weight illusion. Attention, Perception, and Psychophysics, 2014, 76, 452-459.	0.7	17
219	Differential effects of advance semantic cues on grasping, naming, and manual estimation. Experimental Brain Research, 2006, 175, 139-152.	0.7	16
220	Differential effects of delay upon visually and haptically guided grasping and perceptual judgments. Experimental Brain Research, 2009, 195, 473-479.	0.7	16
221	A brief review of the role of training in near-tool effects. Frontiers in Psychology, 2013, 4, 576.	1.1	15
222	Affective blindsight in the absence of input from face processing regions in occipital-temporal cortex. Neuropsychologia, 2019, 128, 50-57.	0.7	15
223	Blindsight in rodents: The use of a â€ [~] high-level' distance cue in gerbils with lesions of primary visual cortex. Behavioural Brain Research, 1990, 38, 283-289.	1.2	14
224	Action Rules: Why the Visual Control of Reaching and Grasping is Not Always Influenced by Perceptual Illusions. Perception, 2008, 37, 355-366.	0.5	14
225	Impaired delayed but preserved immediate grasping in a neglect patient with parieto-occipital lesions. Neuropsychologia, 2011, 49, 2498-2504.	0.7	14
226	The Role of Online Visual Feedback for the Control of Target-Directed and Allocentric Hand Movements. Journal of Neurophysiology, 2011, 105, 846-859.	0.9	14
227	Equal-magnitude size-weight illusions experienced within and between object categories. Journal of Vision, 2016, 16, 25.	0.1	14
228	A TMS Investigation on the Role of Lateral Occipital Complex and Caudal Intraparietal Sulcus in the Perception of Object Form and Orientation. Journal of Cognitive Neuroscience, 2017, 29, 881-895.	1.1	14
229	The effects of smiling on perceived age defy belief. Psychonomic Bulletin and Review, 2018, 25, 612-616.	1.4	14
230	Oral contraceptive use affects manual praxis but not simple visually guided movements. Developmental Neuropsychology, 1998, 14, 399-420.	1.0	13
231	Learned perceptual associations influence visuomotor programming under limited conditions: kinematic consistency. Experimental Brain Research, 2002, 147, 485-493.	0.7	13
232	Retinotopic organization of the visual cortex before and after decompression of the optic chiasm in a patient with pituitary macroadenoma. Journal of Neurosurgery, 2012, 117, 218-224.	0.9	13
233	Gender-selective neural populations: evidence from event-related fMRI repetition suppression. Experimental Brain Research, 2013, 226, 241-252.	0.7	13
234	A cortical network that marks the moment when conscious representations are updated. Neuropsychologia, 2015, 79, 113-122.	0.7	13

#	Article	IF	CITATIONS
235	Still holding after all these years: An action-perception dissociation in patient DF. Neuropsychologia, 2019, 128, 249-254.	0.7	13
236	Near, Far, or In Between?—Target Edges and the Transport Component of Prehension. Journal of Motor Behavior, 1998, 30, 90-93.	0.5	12
237	Action Insight: The Role of the Dorsal Stream in the Perception of Grasping. Neuron, 2005, 47, 328-329.	3.8	12
238	Reaction times for allocentric movements are 35Âms slower than reaction times for target-directed movements. Experimental Brain Research, 2011, 211, 313-328.	0.7	12
239	Asymmetric interference between the perception of shape and the perception of surface properties. Journal of Vision, 2009, 9, 13-13.	0.1	11
240	Can intention override the "automatic pilot�. Experimental Brain Research, 2010, 202, 623-632.	0.7	11
241	A selective impairment of perception of sound motion direction in peripheral space: A case study. Neuropsychologia, 2016, 80, 79-89.	0.7	11
242	Grip Constancy but Not Perceptual Size Constancy Survives Lesions of Early Visual Cortex. Current Biology, 2020, 30, 3680-3686.e5.	1.8	11
243	The Age-Dependent Neural Substrates of Blindsight. Trends in Neurosciences, 2020, 43, 242-252.	4.2	11
244	Interactions between the dorsal and ventral streams of visual processing. Advances in Neurology, 2003, 93, 249-67.	0.8	11
245	Selection of wrist posture in conditions of motor ambiguity. Experimental Brain Research, 2011, 208, 607-620.	0.7	10
246	Are there right hemisphere contributions to visually-guided movement? Manipulating left hand reaction time advantages in dextrals. Frontiers in Psychology, 2015, 6, 1203.	1.1	10
247	Sharpening vision by adapting to flicker. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12556-12561.	3.3	10
248	Duplex Vision: Separate Cortical Pathways for Conscious Perception and the Control of Action. , 0, , 616-627.		10
249	The effect of smiling on the perceived age of male and female faces across the lifespan. Scientific Reports, 2021, 11, 23020.	1.6	10
250	Spared somatomotor and cognitive functions in a patient with a large porencephalic cyst revealed by fMRI. Neuropsychologia, 2004, 42, 405-418.	0.7	9
251	Temporal distortion in the perception of actions and events. Cognition, 2017, 158, 1-9.	1.1	9
252	Interocular transfer in the pigeon after lesions of the dorsal supraoptic decussation. Behavioural Brain Research, 1985, 16, 1-7.	1.2	8

#	Article	IF	CITATIONS
253	Cortical visual systems for perception and action*. , 2010, , 71-94.		8
254	Learned perceptual associations influence visuomotor programming under limited conditions: cues as surface patterns. Experimental Brain Research, 2002, 147, 473-484.	0.7	7
255	Greater magnocellular saccadic suppression in high versus low autistic tendency suggests a causal path to local perceptual style. Royal Society Open Science, 2015, 2, 150226.	1.1	7
256	Fitts' Law is modulated by movement history. Psychonomic Bulletin and Review, 2018, 25, 1833-1839.	1.4	7
257	The material-weight illusion disappears or inverts in objects made of two materials. Journal of Neurophysiology, 2019, 121, 996-1010.	0.9	7
258	Saccade Latency Provides Evidence for Reduced Face Inversion Effects With Higher Autism Traits. Frontiers in Human Neuroscience, 2019, 13, 470.	1.0	7
259	The Role of Haptic Expectations in Reaching to Grasp: From Pantomime to Natural Grasps and Back Again. Frontiers in Psychology, 2020, 11, 588428.	1.1	7
260	Unusual hand postures but not familiar tools show motor equivalence with precision grasping. Cognition, 2016, 151, 28-36.	1.1	6
261	The role of non-conscious visual processing in obstacle avoidance: A commentary on Ross etÂal. (2018). Cortex, 2018, 98, 269-275.	1.1	6
262	Real action in a virtual world. Behavioral and Brain Sciences, 2001, 24, 984-985.	0.4	5
263	The Effects of Different Aperture-Viewing Conditions on the Recognition of Novel Objects. Perception, 2003, 32, 1169-1179.	0.5	5
264	Temporal order judgments are disrupted more by reflexive than by voluntary saccades. Journal of Neurophysiology, 2014, 111, 2103-2108.	0.9	5
265	The role of animal faces in the animate-inanimate distinction in the ventral temporal cortex. Neuropsychologia, 2022, 169, 108192.	0.7	5
266	Visual search selectively enhances recognition of the search target. Visual Cognition, 2000, 7, 769-784.	0.9	4
267	Functional Reorganization in the Adult Brain. Neuron, 2007, 54, 352-353.	3.8	4
268	When the predictive brain gets it really wrong. Behavioral and Brain Sciences, 2013, 36, 208-209.	0.4	4
269	Duplex Vision. , 2017, , 648-661.		4
270	Computation of Absolute Distance in the Mongolian Gerbil (Meriones unguiculatus): Depth Algorithms and Neural Substrates. Research Notes in Neural Computing, 1991, , 205-219.	0.1	4

#	Article	IF	CITATIONS
271	Automatic Online Motor Control Is Intact in Parkinson's Disease With and Without Perceptual Awareness. ENeuro, 2017, 4, ENEURO.0215-17.2017.	0.9	4
272	Image and Brain: The Resolution of the Imagery Debate. Journal of Cognitive Neuroscience, 1995, 7, 415-420.	1.1	3
273	Coming to grips with vision and touch. Behavioral and Brain Sciences, 2007, 30, 209-210.	0.4	3
274	Koniocellular projections and hand-assisted blindsight. Neuropsychologia, 2008, 46, 3241-3242.	0.7	3
275	When perception intrudes on 2D grasping: evidence from Garner interference. Psychological Research, 2020, 84, 2138-2143.	1.0	3
276	A priming study on naming real versus pictures of tools. Experimental Brain Research, 2021, 239, 821-834.	0.7	3
277	A visible difference. Current Biology, 2000, 10, R46-R47.	1.8	2
278	Perception and action planning: Getting it together. Behavioral and Brain Sciences, 2001, 24, 907-908.	0.4	2
279	Acute Alcohol Consumption Impairs Controlled but Not Automatic Processes in a Psychophysical Pointing Paradigm. PLoS ONE, 2013, 8, e68682.	1.1	2
280	A pantomiming priming study on the grasp and functionalÂuse actions of tools. Experimental Brain Research, 2019, 237, 2155-2165.	0.7	2
281	Investigating the perceived timing of sensory events triggering actions in patients with Parkinson's disease and the effects of dopaminergic therapy. Cortex, 2019, 115, 309-323.	1.1	2
282	Preserved Striate Cortex is Not Sufficient to Support the McCollough Effect: Evidence from two Patients with Cerebral Achromatopsia. Perception, 2009, 38, 1741-1748.	0.5	1
283	Visual Control of Action. , 2013, , .		1
284	Transforming abstract plans into concrete actions. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 29265-29267.	3.3	1
285	Lessons from human vision for robotic design. Autonomous Intelligent Systems, 2021, 1, 1.	2.0	1
286	Coming to grips with a fundamental deficit in visual perception. Cognitive Neuropsychology, 2022, 39, 109-112.	0.4	1
287	Why Vision is More than Seeing. Canadian Journal of Philosophy Supplementary Volume, 2001, 27, 186-214.	0.2	0
288	Editorial. Experimental Brain Research, 2010, 200, 1-2.	0.7	0

#	Article	IF	CITATIONS
289	Brain areas involved in echolocation motion processing in blind echolocation experts. Seeing and Perceiving, 2012, 25, 140.	0.4	0
290	Touchpoints reveal sensitivity to object shape in an individual with visual agnosia and in another who is cortically blind. Journal of Vision, 2018, 18, 435.	0.1	0
291	An fMRI study identifying brain regions activated when performing well-learned versus newly learned visuomotor associations. Journal of Vision, 2019, 19, 278.	0.1	0