Vivek Gupta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8364377/publications.pdf

Version: 2024-02-01

200 papers

1,602 citations

361413 20 h-index 28 g-index

203 all docs 203 docs citations

times ranked

203

1585 citing authors

#	Article	IF	CITATIONS
1	A General Method for the Synthesis of 11H-Indeno[1,2-B]Quinoxalin- 11-Ones and 6H-Indeno[1,2-B]Pyrido[3,2-E]Pyrazin-6-One Derivatives Using Mandelic Acid as an Efficient Organo-catalyst at Room Temperature. Current Organocatalysis, 2022, 9, 53-61.	0.5	3
2	Synthesis, Characterization, Crystal Structure, Molecular Docking Analysis and Other Physico-Chemical Properties of $(\langle i \rangle E \langle i \rangle)$ -2- $(3,4$ -Dimethoxystyryl)Quinoline. Polycyclic Aromatic Compounds, 2022, 42, 7153-7177.	2.6	4
3	Synthesis, spectroscopic characterization, crystal structure, theoretical (DFT) studies and molecular docking analysis of biologically potent isopropyl 5-chloro-2-hydroxy-3-oxo-2,3-dihydrobenzofuran-2-carboxylate. Molecular Crystals and Liquid Crystals. 2022, 738, 106-127.	0.9	3
4	Dereplication approach for the first time isolation of tatarinowin a and pentadecanoic acid from <i>Acorus calamus</i> L. by using GC-MS. Natural Product Research, 2022, , 1-6.	1.8	0
5	Synthesis, crystal feature and spectral characterization of paeonol derived Schiff base ligands and their Cu(II) complexes with antimicrobial activity. Journal of the Indian Chemical Society, 2022, 99, 100403.	2.8	8
6	Synthesis, characterization and Hirshfeld surface analysis of 2-aminobenzothiazol with 4-fluorobenzoic acid co-crystal. European Journal of Chemistry, 2022, 13, 206-213.	0.6	1
7	One-Pot Assembly for Synthesis of 1,4-Dihydropyridine Scaffold and Their Biological Applications. Polycyclic Aromatic Compounds, 2021, 41, 1495-1505.	2.6	25
8	Camphor sulfonic acid catalyzed a simple, facile, and general method for the synthesis of 2-arylbenzothiazoles, 2-arylbenzimidazoles, and $3 < i > H < / i > -spiro[benzo[< i > d < / i >]thiazole-2,3â \in ^2 - i indolin]-2â \in ^2 - i ones at room temperature. Synthetic Communications, 2021, 51, 1100-1120.$	2.1	24
9	Crystal structure, Hirshfeld surface analysis, and molecular docking studies of 3,3â \in 2-((4-(trifluoromethyl)phenyl) methylene)bis(1-methyl-1 <i>H</i> Liquid Crystals, 2021, 714, 67-79.	0.9	O
10	Mandelic Acid: An Efficient Organo-catalyst for the Synthesis of 3-substituted-3- Hydroxy-indolin-2-ones and Related Derivatives in Aqueous Ethanol at Room Temperature. Current Organocatalysis, 2021, 8, 147-159.	0.5	15
11	Development of a straightforward and efficient protocol for the one-pot multicomponent synthesis of substituted <i>alpha</i> -aminoallylphosphonates under catalyst-free condition. Phosphorus, Sulfur and Silicon and the Related Elements, 2021, 196, 769-779.	1.6	1
12	X-ray crystal structure analysis of 5-bromospiro[indoline-3,7'-pyrano[3,2-C:5,6-C']dichromene]-2,6',8'-trione. European Journal of Chemistry, 2021, 12, 187-191.	0.6	2
13	An efficient synthesis of 4-phenoxy-quinazoline, 2-phenoxy-quinoxaline, and 2-phenoxy-pyridine derivatives using aryne chemistry. RSC Advances, 2021, 11, 3477-3483.	3.6	3
14	Synthesis, characterization, crystal structure and mesomorphic behavior of thiophene based homologous series. Phase Transitions, 2021, 94, 970-985.	1.3	7
15	A Chitosanâ€CatalyzedDomino Aldolâ€Heteroâ€Dielsâ€Alder Synthesis of Cyclic Heptanoidâ€Annulated Pyran Scaffolds. ChemistrySelect, 2021, 6, 12416-12423.	1.5	O
16	Crystallographic structure, activity prediction, and hydrogen bonding analysis of some CSD-based 3,3'-bis-indole derivatives: A review. European Journal of Chemistry, 2021, 12, 493-501.	0.6	0
17	Crystal Structure of 7-Phenyl-5,6-Dihydro-14-Aza-[1]benzopyrano[3,4-b]phenanthren-8H-One. Crystallography Reports, 2021, 66, 1223-1226.	0.6	1
18	Synthesis, X-ray crystal structure, Hirshfeld surface analysis, and molecular docking studies of DMSO/H2O solvate of 5-chlorospiro[indoline-3,7'-pyrano[3,2-c:5,6-c']dichromene]-2,6',8'-trione. European Journal of Chemistry, 2021, 12, 382-388.	0.6	1

#	Article	IF	CITATIONS
19	New pyrazolyl-dibenzo[b,e][1,4]diazepinones: room temperature one-pot synthesis and biological evaluation. Molecular Diversity, 2020, 24, 355-377.	3.9	13
20	Crystallographic analysis and structural conformational study of conessine: A steroidal alkaloid. AIP Conference Proceedings, 2020, , .	0.4	0
21	Triflic Acid Functionalized Carbon@Silica Composite: Synthesis and Applications in Organic Synthesis; DFT Studies of Indeno[1,2â€b]indole. ChemistrySelect, 2020, 5, 2201-2213.	1.5	2
22	Dioxidovanadium(V) complexes of a tridentate ONO Schiff base ligand: Structural characterization, quantum chemical calculations and in-vitro antidiabetic activity. Polyhedron, 2020, 180, 114434.	2.2	22
23	A Zn(II)-Coordination Polymer for the Instantaneous Cleavage of Csp3–Csp3 Bond and Simultaneous Reduction of Ketone to Alcohol. Inorganic Chemistry, 2020, 59, 5350-5356.	4.0	5
24	Mandelic acid catalyzed one-pot three-component synthesis of \hat{l}_{\pm} -aminonitriles and \hat{l}_{\pm} -aminophosphonates under solvent-free conditions at room temperature. Synthetic Communications, 2020, 50, 1545-1560.	2.1	31
25	A General Method for the Synthesis of 3,3-bis(indol-3-yl)indolin-2-ones, bis(indol-3-yl)(aryl)methanes and tris(indol-3-yl)methanes Using Naturally Occurring Mandelic Acid as an Efficient Organo-catalyst in Aqueous Ethanol at Room Temperature. Current Green Chemistry, 2020, 7, 128-140.	1.1	18
26	Sulfoacetate Modified Silica Supported Indium(III) Triflate [SiSAIn(OTf) 2]: A Novel Solid Acid Nanoâ€Catalyst And Investigation of Its Catalytic Potential for Oneâ€Pot Synthesis of 1,2,4,5â€Tetrasubstituted Imidazole Derivatives. ChemistrySelect, 2019, 4, 9179-9184.	1.5	4
27	Carbon-based nanocatalyst:ÂAn efficient and recyclable heterogeneous catalyst for one-pot synthesis of gem-bisamides, hexahydroacridine-1,8-diones and 1,8-dioxo-octahydroxanthenes. Journal of the Iranian Chemical Society, 2019, 16, 2587-2612.	2.2	7
28	Binary and Ternary Zinc(II) Complexes of Acyl Pyrazolones: Synthesis, Spectroscopic Analysis, Crystal Structure and Antimalarial Activity. ChemistrySelect, 2019, 4, 8286-8294.	1.5	7
29	Model investigations for vanadium-protein interactions: Synthesis, characterization and antidiabetic properties. Inorganica Chimica Acta, 2019, 493, 20-28.	2.4	19
30	Crystal Structure of 3-[1-(4-Methylphenyl)-9,10-dihydro-4-azaphenanthren-3-yl]benzo[f]coumarin. Crystallography Reports, 2019, 64, 1047-1050.	0.6	0
31	Isolation, structural modification of macrophin from endophytic fungus Phoma macrostoma and their cytotoxic potential. Medicinal Chemistry Research, 2019, 28, 260-266.	2.4	17
32	Naturally Occurring Organic Acid-catalyzed Facile Diastereoselective Synthesis of Biologically Active (E)-3-(arylimino)indolin-2-one Derivatives in Water at Room Temperature. Current Organic Chemistry, 2019, 23, 1778-1788.	1.6	24
33	A new clerodane furano diterpene glycoside from Tinospora cordifolia triggers autophagy and apoptosis in HCT-116 colon cancer cells. Journal of Ethnopharmacology, 2018, 211, 295-310.	4.1	28
34	Camphor sulphonic acid mediated quantitative 1,3–diol protection of major Labdane diterpenes isolated from <i>Andrographis paniculata</i> . Natural Product Research, 2018, 32, 1751-1759.	1.8	4
35	X-Ray Study of 7a-(2-Chlorophenyl)-7a,8a,9,10,11,12ahexadronaptho[1',2':4,5]furo[3,2-d]pyrrolo[2,1-b]oxazole and 2-(4-fluorophenyl)-2-hydroxynaptho[2,1-b]furan-1(2H)-one. Crystallography Reports, 2018, 63, 382-387.	0.6	1
36	Crystallographic structure analysis of 4-phenoxy-2-(4-(trifluoromethyl)phenyl) quinazoline. AIP Conference Proceedings, 2018, , .	0.4	0

#	Article	IF	CITATIONS
37	Crystal Structure of Ethyl 6-Amino-5-cyano-4-(4-fluorophenyl)-2,4-dihydropyrano[2,3-c]pyrazole-3-carboxylate. Crystallography Reports, 2018, 63, 388-393.	0.6	O
38	Photoredoxâ€Catalyzed Isatin Reactions: Access to Dibenzoâ€1,7â€Naphthyridine Carboxylate and Tryptanthrin. ChemPhotoChem, 2017, 1, 120-124.	3.0	18
39	Synthesis and antimicrobial evaluation of novel 3-(arylideneamino)-3a,8a-dihydroxy-1,3,3a,8a-tetrahydroindeno[1,2- <i>d</i>) limidazole-2,8-diones and their 2-thioxo analogues. Synthetic Communications, 2017, 47, 1159-1168.	2.1	2
40	POCl ₃ -mediated cyclization of (+)-S-mahanimbine led to the divergent synthesis of natural product derivatives with antiplasmodial activity. New Journal of Chemistry, 2017, 41, 4923-4930.	2.8	4
41	Immobilization of organofunctionalized silica (SiMPTMS) with biphenyl-2,2′-dioic acid and investigation of its catalytic property for one-pot tandem synthesis of acridine-1,8-dione derivatives. Journal of the Iranian Chemical Society, 2017, 14, 2199-2210.	2.2	11
42	Chromium(III) complexes of dimethyl diphenyldithiophosphates: Synthesis, characterization, and antibacterial studies. Phosphorus, Sulfur and Silicon and the Related Elements, 2017, 192, 1119-1123.	1.6	2
43	Efficient synthesis and biological evaluation of new benzopyran-annulated pyrano[2,3-c]pyrazole derivatives. Molecular Diversity, 2017, 21, 339-354.	3.9	7
44	Rationally designed benzopyran fused isoxazolidines and derived \hat{l}^2 2,3,3 -amino alcohols as potent analgesics: Synthesis, biological evaluation and molecular docking analysis. European Journal of Medicinal Chemistry, 2017, 127, 210-222.	5.5	13
45	Isolation of three new metabolites and intervention of diazomethane led to separation of compound 1 & 2 from an endophytic fungus, Cryptosporiopsis sp. depicting cytotoxic activity. Medicinal Chemistry Research, 2017, 26, 2900-2908.	2.4	8
46	Synthesis, spectral characterization, and single crystal structure studies of biologically relevant bis-indoline heterocyclic scaffold. Crystallography Reports, 2017, 62, 889-893.	0.6	1
47	Diapolic acid A–B from an endophytic fungus, Diaporthe terebinthifolii depicting antimicrobial and cytotoxic activity. Journal of Antibiotics, 2017, 70, 212-215.	2.0	29
48	Single Crystal X-ray Study of 6-Phenyl-4-(p-tolyl)pyridin-2(1H)-one. Crystallography Reports, 2017, 62, 1144-1147.	0.6	0
49	Ribbon structure stabilized by C ₁₀ and C ₁₂ turns in <i>$\hat{l}\pm\hat{l}^3$</i> hybrid peptide. Journal of Peptide Science, 2016, 22, 208-213.	1.4	3
50	Synthesis, spectroscopic characterization, and crystal structure of a novel indoline derivative. Crystallography Reports, 2016, 61, 1055-1060.	0.6	0
51	X-ray crystallography of methyl (6-amino-5-cyano-2-methyl-4-(2-nitrophenyl)-4H-pyran)-3-carboxylate. Crystallography Reports, 2016, 61, 1051-1054.	0.6	0
52	One-pot synthesis of various 2-amino-4H-chromene derivatives using a highly active supported ionic liquid catalyst. RSC Advances, 2016, 6, 32052-32059.	3.6	24
53	One-pot green synthesis of biologically relevant novel spiro[indolin-2-one-3,4′-pyrano[2,3- <i></i>) pyrazoles] and studies on their spectral and X-ray crystallographic behaviors. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials. 2016. 72. 335-343.	1.1	2

Synthesis, characterization, and crystal structure of $5,5\hat{a}\in^3$ -Difluoro-1H, $1\hat{a}\in^3$ H-[3,3 $\hat{a}\in^2$:3 $\hat{a}\in^2$,3 $\hat{a}\in^3$ -terindol]-2 $\hat{a}\in^2$ (1 $\hat{a}\in^2$ H)-one Crystallography Reports, 2016, 61, 225-229.

#	Article	IF	Citations
55	Triethylammonium salt of dimethyl diphenyldithiophosphates: Single crystal X-ray and DFT analysis. Journal of Chemical Sciences, 2016, 128, 921-928.	1.5	4
56	Domino Knoevenagel/Michael synthesis of 2,2'-arylmethylenebis(3-hydroxy-5,5-dimethyl-2-cyclohexen-1-one) derivatives catalyzed by silica-diphenic acid and their single crystal X-ray analysis. Journal of Chemical Sciences, 2016, 128, 967-976.	1.5	9
57	A Base-Catalyzed, Domino Aldol/hetero-Diels–Alder Synthesis of Tricyclic Pyrano[3,4-c]chromenes in Glycerol. Journal of Organic Chemistry, 2016, 81, 4955-4964.	3.2	15
58	Folded Structure Stabilized by C ₇ , C ₁₀ and C ₁₂ Hydrogen Bonds in $\hat{l}\pm\hat{l}^3$ Hybrid Peptides. ChemistrySelect, 2016, 1, 1674-1677.	1.5	1
59	Synthesis, characterization and single crystal x-ray analysis of a complex of iron(II) bis(2,4-dimethylphenyl)dithiophosphate with 4-ethylpyridine. Crystallography Reports, 2016, 61, 810-814.	0.6	0
60	Tandem <i>gem–</i> dichlorination and nitrile oxide generation from chlorochromene aldoximes: synthesis of a new class of room temperature fluxional 4â€chromanone derivatives. ChemistrySelect, 2016, 1, 567-571.	1.5	6
61	Divergent synthesis of prenylated carbazole alkaloid (+)-S-mahanimbine led to the discovery of a notch activator. RSC Advances, 2016, 6, 83069-83077.	3.6	6
62	Design and microwave assisted synthesis of novel 2-phenyl/2-phenylethynyl-3-aroyl thiophenes as potent antiproliferative agents. MedChemComm, 2016, 7, 1966-1972.	3.4	6
63	Synthesis and crystal structure of [chlorobis(triphenylphospino)(p-chlorobenzaldehyde) Tj ETQq1 1 0.784314 rg	gBT/Overl	ock ₃ 10 Tf 50
64	One-pot synthesis, biological evaluation, and docking study of new chromeno-annulated thiopyrano[2,3-c]pyrazoles. Molecular Diversity, 2016, 20, 639-657.	3.9	6
65	Crystal structure of 1-(4-fluorophenyl)-4-(4-methoxyphenyl)-1H-1,2,3-triazole. Acta Crystallographica Section E: Crystallographic Communications, 2015, 71, 0534-0535.	0.5	3
66	Effects of non covalent interactions in light emitting properties of bis-pyridyl-alkyl-di-imines. RSC Advances, 2015, 5, 51220-51232.	3.6	11
67	Formation of a nanorod shaped ionogel and its high catalytic activity for one-pot synthesis of benzothiazoles. New Journal of Chemistry, 2015, 39, 5116-5120.	2.8	8
68	One-pot synthesis of 1,4-disubstituted 1,2,3-triazoles via Huisgen 1,3-dipolar cycloaddition catalysed by SiO2–Cu(I) oxide and single crystal X-ray analysis of 1-benzyl-4-phenyl-1H-1,2,3-triazole. Monatshefte FÃ⅓r Chemie, 2015, 146, 143-148.	1.8	13
69	A domino synthetic approach for new, angular pyrazol- and isoxazol-heterocycles using [DBU][Ac] as an effective reaction medium. RSC Advances, 2015, 5, 23519-23529.	3.6	12
70	Efficient synthesis of some new antiproliferative N-fused indoles and isoquinolines via 1,3-dipolar cycloaddition reaction in an ionic liquid. New Journal of Chemistry, 2015, 39, 2657-2668.	2.8	33
71	First Donor-Stabilized Complexes of Manganese(II) with Disubstituted diphenyldithiophosphates: synthesis, characterization, biological, and X-ray Analysis. Phosphorus, Sulfur and Silicon and the Related Elements, 2015, 190, 1658-1667.	1.6	3
72	Effect of N-Bound Organic Moiety in Dithiocarbamate (R2NCSâ^2) and trans Influence of Triphenylphosphine on NiS2PN Chromophore. Phosphorus, Sulfur and Silicon and the Related Elements, 2015, 190, 1127-1137.	1.6	6

#	Article	IF	CITATIONS
73	Salicyldimine-based Schiff's complex of copper(ii) as an efficient catalyst for the synthesis of nitrogen and oxygen heterocycles. New Journal of Chemistry, 2015, 39, 3578-3587.	2.8	23
74	Iron(II) and iron(III) complexes of 3,5-dimethyl diphenyldithiophosphate: synthesis, characterization and single-crystal X-ray analysis. Transition Metal Chemistry, 2015, 40, 519-523.	1.4	4
7 5	Studies of an Intermolecular Hydrogen-Bonded Complex of Butyloxy Benzoic Acid and Dipyridyl Ethylene. Molecular Crystals and Liquid Crystals, 2015, 608, 135-145.	0.9	2
76	Enantioselective Synthesis of $\langle i \rangle N \langle i \rangle$ -PMP-1,2-dihydropyridines via Formal [4 + 2] Cycloaddition between Aqueous Glutaraldehyde and Imines. Organic Letters, 2015, 17, 5582-5585.	4.6	30
77	Crystal structure of [1-(3-chlorophenyl)-5-hydroxy-3-methyl-1 <i>H</i> -pyrazol-4-yl](<i>p</i> -tolyl)methanone. Acta Crystallographic Communications, 2015, 71, o280-o281.	0.5	5
78	Synthesis, spectroscopic characterization, X-ray analysis and theoretical studies on the spectralÂfeatures (FT-IR, ¹ H-NMR), chemical reactivity, NBO analyses of 2-(4-fluorophenyl)-2-(4-fluorophenylamino)acetonitrile and its docking into IDO enzyme. RSC Advances, 2015, 5, 80967-80977.	3.6	8
79	Crystal structure of 4-[(2,4-dichlorophenyl)(5-hydroxy-3-methyl-1-phenyl-1H-pyrazol-4-yl)methyl]-5-methyl-2-phenyl-2,3-dihydro-1H-p Acta Crystallographica Section E: Crystallographic Communications, 2015, 71, 0805-0806.	yra a ad-3-o	ne.3
80	Crystal structure of ethyl 4-(2-chlorophenyl)-2-methyl-4H-pyrimido[2,1-b][1,3]benzothiazole-3-carboxylate. Acta Crystallographica Section E: Crystallographic Communications, 2015, 71, 0669-0669.	0.5	O
81	Synthesis, Characterization, and X-Ray Crystal Structure of Bis(O-amyl) Tj ETQq1 1 0.784314 rgBT /Overlock 10	Tf 50,422	Td dithiocarb
82	Synthesis, Characterization, and X-Ray Structure of Bis(O-butyldithiocarbonato)bis(3-ethyl) Tj ETQq0 0 0 rgBT /C	verlock 1 0.0	0 Tf 50 382 Tc
83	Synthesis and Characterization of Diimine Adducts of BIS(<i>N</i> -Rufuryldithiocarbamato-S,S′)Cadmium(II): Crystal Structure of BIS(<i>N</i> -Furfuryl- <i>N</i> -Propyldithiocarbamato-S,S′)(1,10-Phenanthroline)Cadmium(II). Phosphorus, Sulfur and Silicon and the Related Elements, 2014, 189, 1405-1416.	1.6	0
84	Disubstituted diphenyldithiophosphates of cadmium: synthesis, characterization, and single-crystal X-ray structure. Journal of Coordination Chemistry, 2014, 67, 2925-2941.	2.2	23
85	Synthesis and single crystal x-ray diffraction study of a Schiff base derived from 4-acylpyrazolone and 2-aminophenol. , 2014 , , .		3
86	Conformation of a terminally protected $\hat{l}^2\hat{l}^3$ hybrid dipeptide Boc-Ant-Gpn-OMe stabilized by C6/C7hydrogen bonds. Acta Crystallographica Section C, Structural Chemistry, 2014, 70, 46-49.	0.5	1
87	Crystal structure of 2-(4-nitrophenyl)-2-(phenylamino)propanenitrile and 2-(4-fluorophenylamino)-2-(4-nitrophenyl)propanenitrile. Crystallography Reports, 2014, 59, 1037-1041.	0.6	O
88	2-[4-(Piperidin-1-yl)-5H-chromeno[2,3-d]pyrimidin-2-yl]phenol. Acta Crystallographica Section E: Structure Reports Online, 2014, 70, o447-o448.	0.2	2
89	Crystal structure of (4Z)-1-(3,4-dichlorophenyl)-4-[hydroxy(4-methylphenyl)methylidene]-3-methyl-4,5-dihydro-1H-pyrazol-5-one. Acta Crystallographica Section E: Structure Reports Online, 2014, 70, o1136-o1137.	0.2	2
90	4-Cyano-3-fluorophenyl 4-(hexadecyloxy)benzoate. Acta Crystallographica Section E: Structure Reports Online, 2014, 70, o244-o244.	0.2	0

#	Article	IF	CITATIONS
91	5-((Methoxyimino){2-[(2-methylphenoxy)methyl]phenyl}methyl)-N-phenyl-1,3,4-oxadiazol-2-amine. Acta Crystallographica Section E: Structure Reports Online, 2014, 70, o357-o358.	0.2	1
92	Crystal structure of (Z)-1-(3,4-dichlorophenyl)-3-methyl-4-[(naphthalen-1-ylamino)(p-tolyl)methylidene]-1H-pyrazol-5(4H)-one. Acta Crystallographica Section E: Structure Reports Online, 2014, 70, 0955-0956.	0.2	3
93	Dimethyl 2-[2-(2,4,6-trichlorophenyl)hydrazin-1-ylidene]butanedioate. Acta Crystallographica Section E: Structure Reports Online, 2014, 70, o13-o13.	0.2	O
94	6-Amino-3-methyl-4-(3,4,5-trimethoxyphenyl)-2,4-dihydropyrano[2,3-c]pyrazole-5-carbonitrile. Acta Crystallographica Section E: Structure Reports Online, 2014, 70, 0875-0876.	0.2	4
95	Crystal structure of 5,5′-[(4-fluorophenyl)methylene]bis[6-amino-1,3-dimethylpyrimidine-2,4(1H,3H)-dione]. Acta Crystallographica Section E: Structure Reports Online, 2014, 70, o1098-o1099.	0.2	1
96	An unusual conformation of gabapentin (Gpn) in Pyr-Gpn-NH-NH-Pyr stabilized by weak interactions. Acta Crystallographica Section C, Structural Chemistry, 2014, 70, 776-779.	0.5	0
97	Novel BrÃ, nsted Acidic Ionic Liquid ([CMIM][CF3COO]) Prompted Multicomponent Hantzsch Reaction for the Eco-Friendly Synthesis of Acridinediones: An Efficient and Recyclable Catalyst. Catalysis Letters, 2014, 144, 949-958.	2.6	46
98	Hydrothermal synthesis, structure, and porosity studies of coordination polymer [Na2(H2O)8Cu(pydc)2] n. Monatshefte FÃ 1 4r Chemie, 2014, 145, 447-455.	1.8	2
99	An efficient domino Knoevenagel/hetero-Diels–Alder route to some novel thiochromenoquinoline-fused polyheterocycles. Monatshefte FÃ⅓r Chemie, 2014, 145, 1179-1189.	1.8	13
100	Anti-asthmatic activity of azepino [2, 1-b] quinazolones, synthetic analogues of vasicine, an alkaloid from Adhatoda vasica. Medicinal Chemistry Research, 2014, 23, 4269-4279.	2.4	18
101	Synthesis, Crystal Structure, and Characterization of 2-Phenyl- <i>N</i> -(pyrazin-2-yl)Acetamide. Molecular Crystals and Liquid Crystals, 2014, 592, 199-208.	0.9	3
102	C ₃ symmetric vanadium(<scp>iii</scp>) complexes with O,N-chelating hexadentate tripodal ligands of pyrazolone. RSC Advances, 2014, 4, 43994-43997.	3.6	4
103	Novel oxovanadium(iv) complexes with 4-acyl pyrazolone ligands: synthesis, crystal structure and catalytic activity towards the oxidation of benzylic alcohols. RSC Advances, 2014, 4, 10295.	3.6	22
104	Direct catalytic synthesis of densely substituted 3-formylpyrroles from imines and 1,4-ketoaldehydes. RSC Advances, 2014, 4, 34548-34551.	3.6	11
105	Is metal metathesis a framework-templating strategy to synthesize coordination polymers (CPs)? Transmetallation studies involving flexible ligands. RSC Advances, 2014, 4, 36451-36457.	3.6	4
106	Synthesis and evaluation of 3-salicyloylpyridine derivatives as cytotoxic mitochondrial apoptosis inducers. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 4724-4728.	2.2	6
107	Ethyl 6-amino-5-cyano-4-phenyl-2,4-dihydropyrano[2,3-c]pyrazole-3-carboxylate dimethyl sulfoxide monosolvate. Acta Crystallographica Section E: Structure Reports Online, 2014, 70, o795-o796.	0.2	4
108	Synthesis, Characterization, Crystal Structure, and Thermal Analysis of 4-[(3-acetylphenyl)amino]-2-methylidene-4-oxobutanoic Acid. Molecular Crystals and Liquid Crystals, 2014, 592, 249-258.	0.9	2

#	Article	IF	Citations
109	Crystal Structure of 2-Cyano- <i>N</i> -cyclohexylacetamide. X-ray Structure Analysis Online, 2014, 30, 17-18.	0.2	0
110	Asymmetric Molecules in the Polymorph of 2-Amino-4,5,6,7-tetrahydrobenzo-[<i>b</i>]thiophene-3-carbonitrile. X-ray Structure Analysis Online, 2014, 30, 5-6.	0.2	1
111	Synthesis, Characterization, and Crystal Structure of Negundoside (2′-p-Hydroxybenzoyl) Tj ETQq1 1 0.784314	FrgBT /Ov	verlock 10 T
112	Conformation and crystal structures of 1-aminocyclohexaneacetic acid (\hat{l}^2 3,3Ac6c) in N-protected derivatives. Acta Crystallographica Section E: Structure Reports Online, 2014, 70, 272-277.	0.2	3
113	Synthesis and biologic activities of some novel heterocyclic chalcone derivatives. Medicinal Chemistry Research, 2013, 22, 3969-3983.	2.4	29
114	Triethylammonium acetate-mediated domino-Knoevenagel-hetero-Diels–Alder reaction: synthesis of some angular polyheterocycles. Monatshefte Für Chemie, 2013, 144, 865-878.	1.8	13
115	A convenient 1,3-dipolar cycloaddition–reduction synthetic sequence from 2-allyloxy-5-nitro-salicylaldehyde to aminobenzopyran-annulated heterocycles. RSC Advances, 2013, 3, 17527.	3.6	14
116	A glycerol mediated domino reaction: an efficient, green synthesis of polyheterocycles incorporating a new thiochromeno[2,3-b]quinoline unit. RSC Advances, 2013, 3, 20719.	3.6	20
117	Montmorillonite clay catalyzed synthesis of functionalized pyrroles through domino four-component coupling of amines, aldehydes, 1,3-dicarbonyl compounds and nitroalkanes. RSC Advances, 2013, 3, 21736.	3.6	26
118	Studies on DNA binding behavior of biologically active Cu(II) complexes of Schiff bases containing acyl pyrazolones and 2-ethanolamine. Journal of Coordination Chemistry, 2013, 66, 1094-1106.	2.2	14
119	Efficient One-Pot Synthesis of Precursors of Some Novel Aminochromene Annulated Heterocycles via Domino Knoevenagel–hetero-Diels–Alder Reaction. Synthetic Communications, 2013, 43, 1577-1586.	2.1	11
120	Probing the role of weaker interactions in immobilization of solvents in a new class of supramolecular gelator. RSC Advances, 2013 , , .	3.6	3
121	Hydrothermal synthesis and crystal structure of a supramolecular dinuclear cobalt(II) complex containing the dianion of pyridine-2,6-dicarboxylic acid. Monatshefte Fýr Chemie, 2013, 144, 1807-1813.	1.8	1
122	Synthesis and X-ray Crystal Structure of Bis(<i>O</i> -propylxanthato)-bis(3-chloropyridine)nickel(II). X-ray Structure Analysis Online, 2013, 29, 15-16.	0.2	1
123	Crystal Structure of Bis(<i>O</i> -propyldithiocarbonato- <i>l²</i> ² <i>S</i> , <i>S</i> ′)(3,5-lutidine- <i>l²N</i>)nic X-ray Structure Analysis Online, 2013, 29, 19-20.	chœl¢II).	2
124	Crystal Structure of 2-(2-Methyl-4-nitro-1 <i>H</i> -i>nidazol-1-yl)- <i>N</i> ꀲ-[(1 <i>E</i>)-1-phenylethylidene]acetohydrazide. X-ray Structure Analysis Online, 2013, 29, 9-10.	0.2	0
125	Synthesis and Evaluation of Substituted 4,4a-Dihydro-3H,10H-pyrano[4,3-b][1]benzopyran-10-one as Antimicrobial Agent. ISRN Medicinal Chemistry, 2013, 2013, 1-11.	0.6	1
126	5-(5′-Fluoro-2′-methoxybiphenyl-3-yl)-1,3,4-oxadiazol-2-amine. Acta Crystallographica Section E: Structure Reports Online, 2013, 69, o1788-o1788.	0.2	0

#	ARTICLE	IF	Citations
127	Sonochemical synthesis of a novel nanorod diaqua(pyridine-2,6-dicarboxylato)copper(II) 3-D supramolecular network: new precursor to prepare pure phase nanosized copper(II) oxide. Journal of Coordination Chemistry, 2012, 65, 3917-3931.	2.2	11
128	Crystal Structure of Bis($\langle i \rangle \hat{l} / 4 \langle i \rangle$ -4-methylpiperidine-1-carbodithioato-1:2 $\langle i \rangle \hat{l}^2 \langle i \rangle \langle sup \rangle \langle i \rangle S \langle i \rangle, \langle i \rangle S \langle i \rangle \hat{a} \in ^2:\langle i \rangle S \langle i \rangle \hat{a} \otimes ^2:\langle i \rangle S \langle i$:1 ₀ ⁄xκ	∙ <sฆp>3</s
129	Cocrystallization of Diphenylamine and Picric acid (1:2). X-ray Structure Analysis Online, 2012, 28, 31-32.	0.2	4
130	Synthesis and Crystal Structure of Bis($\langle i \rangle O \langle i \rangle$ -ethyldithiocarbonato)bis(4-ethylpyridine)nickel(II). X-ray Structure Analysis Online, 2012, 28, 69-70.	0.2	3
131	Crystal Structure of (4-Benzoyl-2-methyl-phenoxy)-acetic acid ethyl ester. X-ray Structure Analysis Online, 2012, 28, 27-28.	0.2	4
132	Crystal Structure of Bis(<i>>O</i> -Propyldithiocarbonato- <i>κ</i> ² <i>S</i> , <i>S</i> ′)(2,2′-bipyridine- <i)κ< i="">^{X-ray Structure Analysis Online, 2012, 28, 43-44.}</i)κ<>	o>200. <i>[s</i> sup>	<ixn< i="">,<i>!</i></ixn<>
133	Crystal Structure of <i>N</i> -(4-Methyl-pyridin-2-yl)-3-oxo-butyramide. X-ray Structure Analysis Online, 2012, 28, 73-74.	0.2	0
134	Crystal Structure of Bis($\langle i \rangle O < /i \rangle - \langle i \rangle O < \langle i \rangle O < /i \rangle - O < O < O < O < O < O < O < O < O < O$	0.2	3
135	Synthesis and Crystal Structure of 4-[2-(Methyl-pyridin2-ylamino)ethoxy]-benzaldoxime. X-ray Structure Analysis Online, 2012, 28, 25-26.	0.2	0
136	Access to Some Angular Aminochromeno[2,3â€ <i>c</i>]pyrazole Precursors by a Domino Knoevenagelâ€"heteroâ€Dielsâ€"Alder Reaction. European Journal of Organic Chemistry, 2012, 2012, 5953-5964.	2.4	28
137	Catalyst-and solvent-free one-pot synthesis of some novel polyheterocycles from aryldiazenyl salicylaldehyde derivatives. RSC Advances, 2012, 2, 3069.	3.6	19
138	Synthesis and Characterization of the Adducts of Bis(O-amyldithiocarbonato)nickel(II) with Nitrogen Donors and X-ray Structure of Bis(O-amyldithiocarbonato)bis(3,5-dimethylpyridine)nickel(II). Journal of Chemical Crystallography, 2012, 42, 1176-1181.	1.1	3
139	Synthesis, Characterization and X-Ray Structure of Bis(O-propyldithiocarbonato-κ2) Tj ETQq1 1 0.784314 rgBT /	Overlock :	10 Jf 50 262
140	Synthesis and Characterization of the Adducts of Bis(O-butyldithiocarbonato)nickel(II) with Substituted Heterocyclic Amines and X-ray Structure of Bis(O-butyldithiocarbonato)bis(4-cyanopyridine)nickel(II). Journal of Chemical Crystallography, 2012, 42, 222-226.	1.1	15
141	Crystal Structure of 1-(7,8-Dimethyl-2-oxo-2H-chromen-4-ylmethyl)-pyrrolidine-2,5-dione. X-ray Structure Analysis Online, 2011, 27, 41-42.	0.2	1
142	Crystal Structure of Bis(3,4-dihydroisoquinolin-2(1H)-yl)methanethione. X-ray Structure Analysis Online, 2011, 27, 63-64.	0.2	0
143	Crystal Structure Studies of Two Regioisomers of Bromo-4-Aryloxymethylcoumarins. Journal of Chemical Crystallography, 2011, 41, 541-544.	1.1	7
144	An Efficient and Simple One-Pot Synthesis of Novel 2-Amino-5-aza-6-(dinitrilomethylene)-4,7,7-trimethylbicyclo[2.2.2]octane-1,3-dicarbo-nitrile and its Crystal Structure. Journal of Chemical Crystallography, 2011, 41, 552-556.	1.1	3

#	Article	IF	CITATIONS
145	Crystal Structure of 3β-Hydroxy-16α-methylpregn-5-en-20-one. Journal of Chemical Crystallography, 2011, 41, 582-586.	1.1	2
146	Synthesis and Crystal Structure of 2-Amino-4,6,6-trimethyl-cyclohex-2-en-1,1,3,4(S)-tetracarbonitrile. Journal of Chemical Crystallography, 2011, 41, 742-746.	1.1	0
147	Synthesis and Crystal Structure of (2S,6R) Ethyl 1,2,6-triphenyl-4-(phenylamino)-1,2,5,6-tetrahydropyridine-3-carboxylate. Journal of Chemical Crystallography, 2011, 41, 868-873.	1.1	10
148	Isolation and Crystal Structure of $6\hat{l}_{+}$, $7\hat{l}_{+}$ -Epoxy- $5\hat{l}_{+}$, $17\hat{l}_{+}$,27-trihydroxy-1-oxo-22R-witha-2,24-dienolide monohydrate-A Withasteroid from Withania somnifera Leaves. Journal of Chemical Crystallography, 2011, 41, 1064-1070.	1.1	3
149	Synthesis of some new 4-aryloxmethylcoumarins and examination of their antibacterial and antifungal activities. Journal of Chemical Sciences, 2009, 121, 485-495.	1.5	57
150	Crystal structure of an optically active non-symmetric liquid crystal dimer: cholesteryl 5-[4-(4- <i>n</i> -heptylphenylethynyl)phenoxy]pentanoate. Liquid Crystals, 2009, 36, 225-230.	2.2	12
151	Crystal structure of bis(cholesteryl)4,4′-(1,2-phenylenebis(oxy))-dibutanoate: an oligomesogen. Liquid Crystals, 2009, 36, 339-343.	2.2	18
152	(20R,22R)-6α,7α-Epoxy-5α,27-dihydroxy-1-oxowitha-2,24-dienolide in Leaves of Withania somnifera: Isolation and its Crystal Structure. Journal of Chemical Crystallography, 2008, 38, 769-773.	1.1	2
153	Crystal structure of cholesteryl 5â€(4′â€(<i>n</i> à€decyloxy)â€2′,3′â€difluoroâ€biphenylâ€4â€yloxy)peliquid crystalline nonâ€symmetric dimer. Liquid Crystals, 2008, 35, 1161-1167.	entanoate 2:2	â € " a
154	Crystal Structure of 2,4,9-Trimethylpyrido[3,2-c]coumarin. Analytical Sciences: X-ray Structure Analysis Online, 2008, 24, X203-X204.	0.1	1
155	Crystal Structure of 3-Ethyl-2-methyl-1H-[1,10]phenanthrolin-4-one. Analytical Sciences: X-ray Structure Analysis Online, 2008, 24, X259-X260.	0.1	O
156	Crystal Structure of 3,3,6-Trimethyl-3,4-dihydroisocoumarin. Analytical Sciences: X-ray Structure Analysis Online, 2008, 24, X261-X262.	0.1	1
157	Crystal Structure of 2-phenylpyrazolo[4,3-c]coumarin. Analytical Sciences: X-ray Structure Analysis Online, 2007, 23, X237-X238.	0.1	3
158	Crystal Structure of 3.BETAHydroxy-17-oximinoandrost-5-ene monohydrate. Analytical Sciences: X-ray Structure Analysis Online, 2007, 23, X239-X240.	0.1	0
159	Synthesis, spectral, thermal and crystallographic investigations on oxovanadium(IV) and manganese(III) complexes derived from heterocyclic Î ² -diketone and 2-amino ethanol. Structural Chemistry, 2007, 18, 295-310.	2.0	47
160	C–HO, C–Hπ and π–π stacking interactions in 3-(2,4-dimethylphenyloxymethyl)-3,4-dihydroisocoumarin. Journal of Chemical Crystallography, 2007, 37, 213-217.	1.1	8
161	X-ray study of weak interactions in two flavonoids. Bulletin of Materials Science, 2007, 30, 469-475.	1.7	9
162	Crystal Structure of 6.ALPHA.,7.ALPHA.:24.ALPHA.,25.ALPHADiepoxy-5.ALPHA.,12.ALPHAdihydroxy-1-oxo-20S,22R-witha-2-enolide Isolated from Datura quercifolia Leaves. Analytical Sciences: X-ray Structure Analysis Online, 2006, 22, X169-X170.	0.1	1

#	Article	IF	CITATIONS
163	Crystal Structure of (25R)-Spirost-5-en-3 .BETAacetate. Analytical Sciences: X-ray Structure Analysis Online, 2006, 22, X91-X92.	0.1	2
164	Crystal Structure of R-(+)-Marmin. Analytical Sciences: X-ray Structure Analysis Online, 2006, 22, X11-X12.	0.1	1
165	Crystal Structure of 3-(2'-Hydroxy-5'-methoxyphenyl)-5-(3-methoxy-4-hydroxyphenyl)-4,5-dihydro-1H-pyrazole. Analytical Sciences: X-ray Structure Analysis Online, 2006, 22, X261-X262.	0.1	2
166	Crystal Structure of 5 .BETA.,6 .BETAEpoxy-4 .BETA.,27-dihydroxy-1-oxo-22R-witha-2,24-dienolide Isolated from Withania somnifera Leaves. Analytical Sciences: X-ray Structure Analysis Online, 2006, 22, X89-X90.	0.1	2
167	Crystal structure of 3β-acetoxy-pregna-5,16-dien-20-one (16 DPA). Journal of Chemical Crystallography, 2006, 36, 161-166.	1.1	8
168	Selinidin: Crystal structure generated by C–H···O, C–H···π and π-π interactions. Journal of Chemical Crystallography, 2006, 36, 117-122.	1.1	1
169	Synthesis and crystal structure of 5,7-diallyloxy-4-methylcoumarin. Journal of Chemical Crystallography, 2006, 36, 77-82.	1.1	4
170	Crystal structure of $3\hat{l}^2$ -acetoxy- $17\hat{l}_{\pm}$ -hydroxy- $16\hat{l}_{\pm}$ -methylallopregnan-20-one hemihydrate. Journal of Chemical Crystallography, 2006, 36, 427-433.	1.1	3
171	6α,7α-epoxy-5α,17α,dihydroxy-1-oxo-22R-witha-2,24-dienolide in leaves of Withania somnifera: Isolation and its crystal structure. Journal of Chemical Crystallography, 2006, 36, 153-159.	1.1	8
172	Crystal Structure and Synthesis of 3-Benzyl-3-phenyl-3,4-dihydroisocoumarin. Analytical Sciences: X-ray Structure Analysis Online, 2005, 21, X213-X214.	0.1	4
173	Supramolecular structure of S-(+)-marmesin—a linear dihydrofuranocoumarin. Bulletin of Materials Science, 2005, 28, 725-729.	1.7	11
174	Crystal structure of a liquid crystal nonâ€symmetric dimer: cholesteryl 4â€[4â€(4â€nâ€butylphenylethynyl)phenoxy]butanoate. Liquid Crystals, 2005, 32, 741-747.	2.2	6
175	Synthesis, X-ray structure determination and analysis of packing interactions in 9-(1,2-propenyl)-6-carboethoxy-2-methyl-2,3-dihydrofuro[2,3-h]-benzopyran-5H-one. Journal of Chemical Crystallography, 2004, 34, 735-741.	1.1	4
176	Synthesis and X-ray crystallography of cholest-3,5-diene-7-one-oxime. Journal of Chemical Crystallography, 2002, 32, 325-329.	1.1	11
177	Crystallographic Analysis of Acetyl \hat{I}^2 -boswellic acid. Crystal Research and Technology, 2001, 36, 93-100.	1.3	9
178	$3\ \hat{l}^2$ -Acetoxy-5 \hat{l}_\pm -cholestan-6-one: A Steroid. Crystal Research and Technology, 2001, 36, 215-221.	1.3	10
179	Crystal Structure of 6-Nitro-cholest-5-ene. Crystal Research and Technology, 2001, 36, 471-476.	1.3	8
180	Structure Analysis of Methyl-3,4-dihydro-3-(p-methylphenyl)-4-oxo-2-quinazolinyl thiopropionate. Crystal Research and Technology, 2001, 36, 1451.	1.3	9

#	Article	IF	CITATIONS
181	Factorial Moments of 28 Si Induced Interactions with Ag(Br) Nuclei. Acta Physica Hungarica A Heavy Ion Physics, 2001, 13, 213-221.	0.4	15
182	Fragmentation and multifragmentation of 10.6A GeV gold nuclei. European Physical Journal A, 1999, 5, 429-440.	2.5	33
183	Angular distributions of light projectile fragments in deep inelastic Pb + Em interactions at 160 A GeV. European Physical Journal A, 1999, 6, 421-425.	2.5	11
184	Critical behaviour in Au fragmentation at 10.7A GeV. European Physical Journal A, 1998, 1, 77-83.	2.5	13
185	Bounce – off in 197Au induced collisions with Ag(Br) nuclei at 11.6 A GeV/c. European Physical Journal A, 1998, 2, 61-67.	2.5	31
186	High Pressure Studies on Hexa- <i>n</i> -alkoxy Triphenylene Homologous Series. Molecular Crystals and Liquid Crystals, 1998, 319, 193-206.	0.3	12
187	Crystal Structure of 5,7-Dimethoxy-8-(2-oxo-3-methylbutyl)-2 H-1-benzopyran-2-one (Isosibiricin). Crystal Research and Technology, 1995, 30, 1115-1120.	1.3	5
188	X-ray structure analysis of 4-pregnen-11α-ol-3,20-dioneâ€"A steroid. Crystal Research and Technology, 1994, 29, 77-83.	1.3	18
189	X-ray crystal structure analysis of parthenin–A sesquiterpene lactone. Crystal Research and Technology, 1994, 29, 373-378.	1.3	4
190	Structure of $3\hat{l}^2$, 20-diacetoxy- $16\hat{l}_{\pm}$ -methyl-allopregn- $17(20)$ -ene. Crystal Research and Technology, 1994, 29, 837-842.	1.3	15
191	Crystal Structure of Angenomalin — A Furanocoumarin. Crystal Research and Technology, 1993, 28, 187-191.	1.3	13
192	Crystal Structure of 14-Deoxy-11,12-Didehydroandrographolide â€" A Diterpenoid. Crystal Research and Technology, 1993, 28, 359-364.	1.3	3
193	Crystal Structure of N-methyl Crotananinium Iodide — A Pyrrolizidine Alkaloid. Crystal Research and Technology, 1993, 28, 945-951.	1.3	1
194	Crystal Structure of Deoxy-Vasicine Zinc Complex. Crystal Research and Technology, 1993, 28, 1115-1121.	1.3	8
195	STUDY OF NONPERIPHERAL La139 COLLISIONS WITH EMULSION NUCLEI AT 1.2 A GeV. International Journal of Modern Physics A, 1991, 06, 3723-3733.	1.5	0
196	STUDY OF THE CHARACTERISTICS OF La139 EMULSION INTERACTIONS AT 1.2A GeV. International Journal of Modern Physics A, 1990, 05, 755-769.	1.5	7
197	RAPIDITY DISPERSION AND CLUSTER SIZE DETERMINATION IN α-EMULSION INTERACTIONS AT 12A GeV/c. Modern Physics Letters A, 1988, 03, 1411-1419.	1.2	3
198	STUDY OF INELASTIC α-EMULSION INTERACTIONS AT 12A GeV/c. Modern Physics Letters A, 1988, 03, 1753-176	5.1.2	4

#	Article	IF	CITATIONS
199	Energy dependence of multiplicity in proton-nucleus collisions and models of multiparticle production. Pramana - Journal of Physics, 1974, 3, 311-322.	1.8	36
200	Crystal structure, Hirshfeld surface analysis and molecular docking studies of 3-(sec-butylthio)-4-hydroxy-2H-chromen-2-one. Molecular Crystals and Liquid Crystals, 0, , 1-14.	0.9	0