Tao Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8363441/publications.pdf

Version: 2024-02-01

ΤΛΟ ΖΗΛΝΟ

#	Article	IF	CITATIONS
1	Dispersion hydrophobic electrolyte enables lithium-oxygen battery enduring saturated water vapor. Journal of Energy Chemistry, 2022, 64, 511-519.	12.9	7
2	Boosting capacity and operating voltage of LiVO3 as cathode for lithium-ion batteries by activating oxygen reaction in the lattice. Journal of Power Sources, 2022, 517, 230728.	7.8	7
3	Ru Coordinated ZnIn ₂ S ₄ Triggers Local Lattice‣train Engineering to Endow Highâ€Efficiency Electrocatalyst for Advanced Znâ€Air Batteries. Advanced Functional Materials, 2022, 32,	14.9	37
4	Sacrificial Co-solvent Electrolyte to Construct a Stable Solid Electrolyte Interphase in Lithium–Oxygen Batteries. ACS Applied Materials & Interfaces, 2022, 14, 10327-10336.	8.0	6
5	Anionâ€Decoordination Cell Formation Process Stabilizes Dual Electrodes for Longâ€Life Quasiâ€Solidâ€State Lithium Metal Battery. Advanced Materials Interfaces, 2022, 9, .	3.7	3
6	Perfluorinated organics regulating Li ₂ O ₂ formation and improving stability for Li–oxygen batteries. Chemical Communications, 2021, 57, 3030-3033.	4.1	6
7	Deciphering the Enigma of Li ₂ CO ₃ Oxidation Using a Solid-State Li–Air Battery Configuration. ACS Applied Materials & Interfaces, 2021, 13, 14321-14326.	8.0	13
8	Bifunctional 1-Boc-3-lodoazetidine Enhancing Lithium Anode Stability and Rechargeability of Lithium–Oxygen Batteries. ACS Applied Materials & Interfaces, 2021, 13, 16437-16444.	8.0	7
9	Metal nano-drills directionally regulate pore structure in carbon. Carbon, 2021, 175, 60-68.	10.3	7
10	Chimerism of Carbon by Ruthenium Induces Gradient Catalysis. Advanced Functional Materials, 2021, 31, 2104011.	14.9	10
11	A Surface Coordination Interphase Stabilizes a Solidâ€5tate Battery. Angewandte Chemie, 2021, 133, 24364.	2.0	1
12	A Surface Coordination Interphase Stabilizes a Solidâ€State Battery. Angewandte Chemie - International Edition, 2021, 60, 24162-24170.	13.8	31
13	Innentitelbild: A Surface Coordination Interphase Stabilizes a Solid‣tate Battery (Angew. Chem.) Tj ETQq1 1 0	.784314 r 2.0	gBT /Overloc
14	A bromo-nitro redox mediator of BrCH2NO2 for efficient lithium–oxygen batteries. Journal of Power Sources, 2021, 506, 230181.	7.8	11
15	Partial Disproportionation Gallium-Oxygen Reaction Boosts Lithium-Oxygen Batteries. Energy Storage Materials, 2021, 41, 475-484.	18.0	12
16	Localization of electrons within interlayer stabilizes NASICON-type solid-state electrolyte. Materials Today Energy, 2021, 22, 100875.	4.7	9
17	Micro <i>versus</i> nanochannels: carbon micro-sieve tubes from biological phloem tissues for lithium–oxygen batteries. Green Chemistry, 2020, 22, 388-396.	9.0	15
18	Conversion inorganic interlayer of a LiF/graphene composite in all-solid-state lithium batteries. Chemical Communications, 2020, 56, 1725-1728.	4.1	14

Tao Zhang

#	Article	IF	CITATIONS
19	Highly Localized C–N2 Sites for Efficient Oxygen Reduction. ACS Catalysis, 2020, 10, 9366-9375.	11.2	21
20	On-surface lithium donor reaction enables decarbonated lithium garnets and compatible interfaces within cathodes. Nature Communications, 2020, 11, 5519.	12.8	63
21	A porous framework infiltrating Li–O ₂ battery: a low-resistance and high-safety system. Sustainable Energy and Fuels, 2020, 4, 1600-1606.	4.9	10
22	Inward growth of superthin TiC skin on carbon nanotube framework as stable cathode support for Li–O2 batteries. Energy Storage Materials, 2020, 30, 59-66.	18.0	20
23	Interfacial integration and roll forming of quasi-solid-state Li–O2 battery through solidification and gelation of ionic liquid. Journal of Power Sources, 2020, 463, 228179.	7.8	20
24	Anode interfacial layer formation via reductive ethyl detaching of organic iodide in lithium–oxygen batteries. Nature Communications, 2019, 10, 3543.	12.8	55
25	A review of oxygen reduction mechanisms for metal-free carbon-based electrocatalysts. Npj Computational Materials, 2019, 5, .	8.7	480
26	Mechanochemical synthesis of multi-site electrocatalysts as bifunctional zinc–air battery electrodes. Journal of Materials Chemistry A, 2019, 7, 19355-19363.	10.3	53
27	Inverting the Triiodide Formation Reaction by the Synergy between Strong Electrolyte Solvation and Cathode Adsorption for Lithium–Oxygen Batteries. Angewandte Chemie, 2019, 131, 18565-18569.	2.0	2
28	Inverting the Triiodide Formation Reaction by the Synergy between Strong Electrolyte Solvation and Cathode Adsorption for Lithium–Oxygen Batteries. Angewandte Chemie - International Edition, 2019, 58, 18394-18398.	13.8	25
29	Halosilane triggers anodic silanization and cathodic redox for stable and efficient lithium–O ₂ batteries. Journal of Materials Chemistry A, 2019, 7, 18237-18243.	10.3	15
30	Nanocomposite intermediate layers formed by conversion reaction of SnO2 for Li/garnet/Li cycle stability. Journal of Power Sources, 2019, 420, 15-21.	7.8	61
31	Easily Decomposed Discharge Products Induced by Cathode Construction for Highly Energy-Efficient Lithium–Oxygen Batteries. ACS Applied Materials & Interfaces, 2019, 11, 14803-14809.	8.0	20
32	Oxygen-free cell formation process obtaining LiF protected electrodes for improved stability in lithium-oxygen batteries. Energy Storage Materials, 2019, 23, 670-677.	18.0	27
33	Rücktitelbild: Inverting the Triiodide Formation Reaction by the Synergy between Strong Electrolyte Solvation and Cathode Adsorption for Lithium–Oxygen Batteries (Angew. Chem. 51/2019). Angewandte Chemie, 2019, 131, 18892-18892.	2.0	0
34	Suppressing Self-Discharge of Vanadium Diboride by Zwitterionicity of the Polydopamine Coating Layer. ACS Applied Materials & Interfaces, 2019, 11, 5123-5128.	8.0	9
35	Rechargeable solid-state Li-air batteries: a status report. Rare Metals, 2018, 37, 459-472.	7.1	35
36	lonic activation <i>via</i> a hybrid IL–SSE interfacial layer for Li–O ₂ batteries with 99.5% coulombic efficiency. Journal of Materials Chemistry A, 2018, 6, 12945-12949.	10.3	13

#	Article	IF	CITATIONS
37	Co ₃ O ₄ /MnO ₂ /Hierarchically Porous Carbon as Superior Bifunctional Electrodes for Liquid and All-Solid-State Rechargeable Zinc–Air Batteries. ACS Applied Materials & Interfaces, 2018, 10, 15591-15601.	8.0	89
38	One Step Fabrication of <scp>Co₃O₄â€PPy</scp> Cathode for Lithiumâ€ <scp>O₂</scp> Batteries. Chinese Journal of Chemistry, 2017, 35, 35-40.	4.9	11