
George S Baillie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8363405/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Phosphodiesterase type 4 anchoring regulates cAMP signaling to Popeye domain-containing proteins. Journal of Molecular and Cellular Cardiology, 2022, 165, 86-102.	1.9	11
2	CMYA5 is a novel interaction partner of FHL2 in cardiac myocytes. FEBS Journal, 2022, 289, 4622-4645.	4.7	6
3	<scp>SUMOylation</scp> does not affect cardiac troponin I stability but alters indirectly the development of force in response to Ca ²⁺ . FEBS Journal, 2022, 289, 6267-6285.	4.7	2
4	The enigmatic helicase DHX9 and its association with the hallmarks of cancer. Future Science OA, 2021, 7, FSO650.	1.9	23
5	The RanBP2/RanGAP1-SUMO complex gates β-arrestin2 nuclear entry to regulate the Mdm2-p53 signaling axis. Oncogene, 2021, 40, 2243-2257.	5.9	13
6	Identification and Characterization of an Affimer Affinity Reagent for the Detection of the cAMP Sensor, EPAC1. Cells, 2021, 10, 2307.	4.1	1
7	Peptides derived from the SARS-CoV-2 receptor binding motif bind to ACE2 but do not block ACE2-mediated host cell entry or pro-inflammatory cytokine induction. PLoS ONE, 2021, 16, e0260283.	2.5	1
8	Chorea-related mutations in PDE10A result in aberrant compartmentalization and functionality of the enzyme. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 677-688.	7.1	8
9	Post-translational regulation of cardiac myosin binding protein-C: A graphical review. Cellular Signalling, 2020, 76, 109788.	3.6	16
10	Dynamic Palmitoylation of the Sodium-Calcium Exchanger Modulates Its Structure, Affinity for Lipid-Ordered Domains, and Inhibition by XIP. Cell Reports, 2020, 31, 107697.	6.4	32
11	Structural insights into TAZ2 domain–mediated CBP/p300 recruitment by transactivation domain 1 of the lymphopoietic transcription factor E2A. Journal of Biological Chemistry, 2020, 295, 4303-4315.	3.4	9
12	Epidermal growth factor signaling through transient receptor potential melastatin 7 cation channel regulates vascular smooth muscle cell function. Clinical Science, 2020, 134, 2019-2035.	4.3	15
13	Phosphodiesterase 4B: Master Regulator of Brain Signaling. Cells, 2020, 9, 1254.	4.1	36
14	Fibrin Breakdown Assay. Bio-protocol, 2020, 10, e3585.	0.4	1
15	Measuring cAMP Specific Phosphodiesterase Activity: A Two-step Radioassay. Bio-protocol, 2020, 10, e3581.	0.4	0
16	Investigation of Novel Cavin-1/Suppressor of CytokineÂSignaling 3 (SOCS3) Interactions by Coimmunoprecipitation, Peptide Pull-Down, and Peptide Array Overlay Approaches. Methods in Molecular Biology, 2020, 2169, 105-118.	0.9	2
17	Therapeutic targeting of 3′,5′-cyclic nucleotide phosphodiesterases: inhibition and beyond. Nature Reviews Drug Discovery, 2019, 18, 770-796.	46.4	205
18	The Association of the Long Prostate Cancer Expressed PDE4D Transcripts to Poor Patient Outcome Depends on the Tumour's TMPRSS2-ERG Fusion Status. Prostate Cancer, 2019, 2019, 1-14.	0.6	8

#	Article	IF	CITATIONS
19	Small-molecule allosteric activators of PDE4 long form cyclic AMP phosphodiesterases. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 13320-13329.	7.1	54
20	A high-fat diet promotes depression-like behavior in mice by suppressing hypothalamic PKA signaling. Translational Psychiatry, 2019, 9, 141.	4.8	77
21	AKAP95 Organizes a Nuclear Microdomain to Control Local cAMP for Regulating Nuclear PKA. Cell Chemical Biology, 2019, 26, 885-891.e4.	5.2	37
22	Targeting B-Raf inhibitor resistant melanoma with novel cell penetrating peptide disrupters of PDE8A – C-Raf. BMC Cancer, 2019, 19, 266.	2.6	14
23	Phosphorylation of PDE4A5 by MAPKAPK2 attenuates fibrin degradation via p75 signalling. Journal of Biochemistry, 2019, 166, 97-106.	1.7	7
24	Methods to Investigate Arrestins in Complex with Phosphodiesterases. Methods in Molecular Biology, 2019, 1957, 121-137.	0.9	1
25	PDE10A mutations help to unwrap the neurobiology of hyperkinetic disorders. Cellular Signalling, 2019, 60, 31-38.	3.6	4
26	Effect of tacrolimus on skin microbiome in atopic dermatitis. Allergy: European Journal of Allergy and Clinical Immunology, 2019, 74, 1400-1406.	5.7	16
27	Reshaping cAMP nanodomains through targeted disruption of compartmentalised phosphodiesterase signalosomes. Biochemical Society Transactions, 2019, 47, 1405-1414.	3.4	16
28	Understanding PDE4's function in Alzheimer's disease; a target for novel therapeutic approaches. Biochemical Society Transactions, 2019, 47, 1557-1565.	3.4	36
29	Interaction of suppressor of cytokine signalling 3 with cavin-1 links SOCS3 function and cavin-1 stability. Nature Communications, 2018, 9, 168.	12.8	25
30	FBXW7 regulates DISC1 stability via the ubiquitin-proteosome system. Molecular Psychiatry, 2018, 23, 1278-1286.	7.9	31
31	Validation of Cyclic Adenosine Monophosphate Phosphodiesterase-4D7 for its Independent Contribution to Risk Stratification in a Prostate Cancer Patient Cohort with Longitudinal Biological Outcomes. European Urology Focus, 2018, 4, 376-384.	3.1	12
32	Amyloid β synaptotoxicity is Wntâ€₽CP dependent and blocked by fasudil. Alzheimer's and Dementia, 2018, 14, 306-317.	0.8	81
33	Increase in Ca2+ current by sustained cAMP levels enhances proliferation rate in GH3 cells. Life Sciences, 2018, 192, 144-150.	4.3	6
34	A769662 Inhibits Insulin-Stimulated Akt Activation in Human Macrovascular Endothelial Cells Independent of AMP-Activated Protein Kinase. International Journal of Molecular Sciences, 2018, 19, 3886.	4.1	9
35	Modelling and mathematical analysis of the M\$_{2}\$ receptor-dependent joint signalling and secondary messenger network in CHO cells. Mathematical Medicine and Biology, 2018, 35, 279-297.	1.2	0
36	A role for APP in Wnt signalling links synapse loss with β-amyloid production. Translational Psychiatry, 2018, 8, 179.	4.8	74

#	Article	IF	CITATIONS
37	A biochemical and genetic discovery pipeline identifies PLCĨ 4b as a nonreceptor activator of heterotrimeric G-proteins. Journal of Biological Chemistry, 2018, 293, 16964-16983.	3.4	20
38	PDE4-Mediated cAMP Signalling. Journal of Cardiovascular Development and Disease, 2018, 5, 8.	1.6	54
39	RAB40C regulates RACK1 stability via the ubiquitin–proteasome system. Future Science OA, 2018, 4, FSO317.	1.9	18
40	The Prognostic PDE4D7 Score in a Diagnostic Biopsy Prostate Cancer Patient Cohort with Longitudinal Biological Outcomes. Prostate Cancer, 2018, 2018, 1-11.	0.6	10
41	Selective inhibition of phosphodiesterases 4, 5 and 9 induces HSP20 phosphorylation and attenuates amyloid beta 1–42â€mediated cytotoxicity. FEBS Open Bio, 2017, 7, 64-73.	2.3	13
42	Identification of a multifunctional docking site on the catalytic unit of phosphodiesterase-4 (PDE4) that is utilised by multiple interaction partners. Biochemical Journal, 2017, 474, 597-609.	3.7	27
43	TIAM1 Antagonizes TAZ/YAP Both in the Destruction Complex in the Cytoplasm and in the Nucleus to Inhibit Invasion of Intestinal Epithelial Cells. Cancer Cell, 2017, 31, 621-634.e6.	16.8	73
44	Molecular mechanism of Gαi activation by non-GPCR proteins with a Gα-Binding and Activating motif. Nature Communications, 2017, 8, 15163.	12.8	39
45	Cardiac cAMP Microdomains and Their Modulation Using Disruptor Peptides. Cardiac and Vascular Biology, 2017, , 161-173.	0.2	0
46	Peptide array-based screening reveals a large number of proteins interacting with the ankyrin-repeat domain of the zDHHC17 S-acyltransferase. Journal of Biological Chemistry, 2017, 292, 17190-17202.	3.4	33
47	PDE8 controls CD4+ T cell motility through the PDE8A-Raf-1 kinase signaling complex. Cellular Signalling, 2017, 40, 62-72.	3.6	12
48	RACK1 stabilises the activity of PP2A to regulate the transformed phenotype in mammary epithelial cells. Cellular Signalling, 2017, 35, 290-300.	3.6	7
49	Ambra1 spatially regulates Src activity and Src/FAK-mediated cancer cell invasion via trafficking networks. ELife, 2017, 6, .	6.0	32
50	PTEN controls glandular morphogenesis through a juxtamembrane β-Arrestin1/ARHGAP21 scaffolding complex. ELife, 2017, 6, .	6.0	19
51	PDE2A2 regulates mitochondria morphology and apoptotic cell death via local modulation of cAMP/PKA signalling. ELife, 2017, 6, .	6.0	82
52	Epstein–Barr virus nuclear antigen 1 interacts with regulator of chromosome condensation 1 dynamically throughout the cell cycle. Journal of General Virology, 2017, 98, 251-265.	2.9	15
53	Apremilast Induces Apoptosis of Human Colorectal Cancer Cells with Mutant KRAS. Anticancer Research, 2017, 37, 3833-3839.	1.1	14
54	Sleep deprivation causes memory deficits by negatively impacting neuronal connectivity in hippocampal area CA1. ELife, 2016, 5, .	6.0	191

#	Article	IF	CITATIONS
55	Editorial: Frontiers in the Pharmacological Manipulation of Intracellular cAMP Levels. Frontiers in Pharmacology, 2016, 7, 4.	3.5	1
56	Gpr161 anchoring of PKA consolidates GPCR and cAMP signaling. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 7786-7791.	7.1	86
57	Non-genetic therapeutic approaches to Canavan disease. Journal of the Neurological Sciences, 2016, 366, 116-124.	0.6	13
58	SUMOylation of DISC1: A Potential Role in Neural Progenitor Proliferation in the Developing Cortex. Molecular Neuropsychiatry, 2016, 2, 20-27.	2.9	4
59	Location, location, location: PDE4D5 function is directed by its unique N-terminal region. Cellular Signalling, 2016, 28, 701-705.	3.6	9
60	Interaction between integrin α5 and PDE4D regulates endothelial inflammatory signalling. Nature Cell Biology, 2016, 18, 1043-1053.	10.3	79
61	Compartmentalized PDE4A5 Signaling Impairs Hippocampal Synaptic Plasticity and Long-Term Memory. Journal of Neuroscience, 2016, 36, 8936-8946.	3.6	52
62	Phosphorylation of Janus kinase 1 (JAK1) by AMP-activated protein kinase (AMPK) links energy sensing to anti-inflammatory signaling. Science Signaling, 2016, 9, ra109.	3.6	80
63	Missense mutation in DISC1 C-terminal coiled-coil has GSK3Î ² signaling and sex-dependent behavioral effects in mice. Scientific Reports, 2016, 6, 18748.	3.3	26
64	Editorial. Cellular Signalling, 2016, 28, 699-700.	3.6	0
65	p75 Neurotrophin Receptor Regulates Energy Balance in Obesity. Cell Reports, 2016, 14, 255-268.	6.4	42
66	Specific Inhibition of Phosphodiesterase-4B Results in Anxiolysis and Facilitates Memory Acquisition. Neuropsychopharmacology, 2016, 41, 1080-1092.	5.4	53
67	Human PDE4D isoform composition is deregulated in primary prostate cancer and indicative for disease progression and development of distant metastases. Oncotarget, 2016, 7, 70669-70684.	1.8	21
68	3â€Angiotensin 1–7 regulation of endothelin-1 system in pulmonary hypertension. Heart, 2015, 101, A1.3-A1	. 2.9	0
69	George Baillie on peptide array, a technique that transformed research on phosphodiesterases. Future Science OA, 2015, 1, FSO27.	1.9	4
70	Heat shock protein 20 (HSP20) is a novel substrate for protein kinase D1 (PKD1). Cell Biochemistry and Function, 2015, 33, 421-426.	2.9	10
71	Cytodynamics and endpoint selection for a reliable in vitro assessment of nanoneurotoxicity. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 407-408.	3.3	2
72	Dimerization of cAMP phosphodiesterase-4 (PDE4) in living cells requires interfaces located in both the UCR1 and catalytic unit domains. Cellular Signalling, 2015, 27, 756-769.	3.6	34

5

#	Article	IF	CITATIONS
73	Cardiac Hypertrophy Is Inhibited by a Local Pool of cAMP Regulated by Phosphodiesterase 2. Circulation Research, 2015, 117, 707-719.	4.5	105
74	Phosphorylation of ezrin on Thr567 is required for the synergistic activation of cell spreading by EPAC1 and protein kinase A in HEK293T cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 1749-1758.	4.1	15
75	The activity of cAMPâ€phosphodiesterase 4D7 (PDE4D7) is regulated by protein kinase Aâ€dependent phosphorylation within its unique Nâ€terminus. FEBS Letters, 2015, 589, 750-755.	2.8	18
76	Small heat shock protein 20 (Hsp20) facilitates nuclear import of protein kinase D 1 (PKD1) during cardiac hypertrophy. Cell Communication and Signaling, 2015, 13, 16.	6.5	28
77	The role and therapeutic targeting of α-, β- and γ-secretase in Alzheimer's disease. Future Science OA, 2015, 1, FSO11.	1.9	75
78	UCR1C is a novel activator of phosphodiesterase 4 (PDE4) long isoforms and attenuates cardiomyocyte hypertrophy. Cellular Signalling, 2015, 27, 908-922.	3.6	29
79	Human phosphodiesterase 4D7 (PDE4D7) expression is increased in TMPRSS2-ERG-positive primary prostate cancer and independently adds to a reduced risk of post-surgical disease progression. British Journal of Cancer, 2015, 113, 1502-1511.	6.4	20
80	Acetylcholinesterase activity as a neurotoxicity marker within the context of experimentally-simulated hyperprolinaemia: An in vitro approach. Journal of Natural Science, Biology and Medicine, 2015, 6, 98.	1.0	8
81	The cardioprotective role of small heat-shock protein 20. Biochemical Society Transactions, 2014, 42, 270-273.	3.4	17
82	Targeted disruption of the heat shock protein 20–phosphodiesterase 4D (PDE4D) interaction protects against pathological cardiac remodelling in a mouse model of hypertrophy. FEBS Open Bio, 2014, 4, 923-927.	2.3	30
83	Epidermal Growth Factor Receptor substrate 8 (Eps8) controls Src/FAK-dependent phenotypes in squamous carcinoma cells. Journal of Cell Science, 2014, 127, 5303-16.	2.0	21
84	β-Adrenergic modulation of myocardial conduction velocity: Connexins vs. sodium current. Journal of Molecular and Cellular Cardiology, 2014, 77, 147-154.	1.9	25
85	Real-time probing of β-amyloid self-assembly and inhibition using fluorescence self-quenching between neighbouring dyes. Molecular BioSystems, 2014, 10, 34-44.	2.9	37
86	PKA phosphorylation of p62/SQSTM1 regulates PB1 domain interaction partner binding. Biochimica Et Biophysica Acta - Molecular Cell Research, 2014, 1843, 2765-2774.	4.1	37
87	Phosphodiesterase 4 interacts with the 5-HT4(b) receptor to regulate cAMP signaling. Cellular Signalling, 2014, 26, 2573-2582.	3.6	14
88	Heterozygous mutations in cyclic AMP phosphodiesterase-4D (PDE4D) and protein kinase A (PKA) provide new insights into the molecular pathology of acrodysostosis. Cellular Signalling, 2014, 26, 2446-2459.	3.6	56
89	A biosensor to monitor dynamic regulation and function of tumour suppressor PTEN in living cells. Nature Communications, 2014, 5, 4431.	12.8	21
90	Perihaematomal cytokine expression is a crucial component of intracerebral haemorrhage pathophysiology. Neurological Sciences, 2014, 35, 1471-1473.	1.9	1

#	Article	IF	CITATIONS
91	Compartmentalisation of second messenger signalling pathways. Current Opinion in Genetics and Development, 2014, 27, 20-25.	3.3	50
92	Mitotic activation of the DISC1-inducible cyclic AMP phosphodiesterase-4D9 (PDE4D9), through multi-site phosphorylation, influences cell cycle progression. Cellular Signalling, 2014, 26, 1958-1974.	3.6	33
93	The cAMP phosphodiesterase-4D7 (PDE4D7) is downregulated in androgen-independent prostate cancer cells and mediates proliferation by compartmentalising cAMP at the plasma membrane of VCaP prostate cancer cells. British Journal of Cancer, 2014, 110, 1278-1287.	6.4	41
94	The phosphorylation of Hsp20 enhances its association with amyloid-Î ² to increase protection against neuronal cell death. Molecular and Cellular Neurosciences, 2014, 61, 46-55.	2.2	19
95	Arrestin-Dependent Localization of Phosphodiesterases. Handbook of Experimental Pharmacology, 2014, 219, 293-307.	1.8	7
96	Arrestin Regulation of Small GTPases. Handbook of Experimental Pharmacology, 2014, 219, 375-385.	1.8	1
97	Chemical informatics uncovers a new role for moexipril as a novel inhibitor of cAMP phosphodiesterase-4 (PDE4). Biochemical Pharmacology, 2013, 85, 1297-1305.	4.4	17
98	The extent and the nature of the cholinergic contribution to the hepatic encephalopathy-induced cognitive impairment. Free Radical Biology and Medicine, 2013, 65, 1516-1517.	2.9	0
99	Can acetylcholinesterase activity be considered as a reliable biomarker for the assessment of cadmium-induced neurotoxicity?. Food and Chemical Toxicology, 2013, 56, 406-410.	3.6	11
100	RACK(1) to the future $\hat{a} \in \hat{a}$ a historical perspective. Cell Communication and Signaling, 2013, 11, 53.	6.5	37
101	Specific interactions between Epac1, β-arrestin2 and PDE4D5 regulate β-adrenergic receptor subtype differential effects on cardiac hypertrophic signaling. Cellular Signalling, 2013, 25, 970-980.	3.6	48
102	Lanthanum-induced neurotoxicity: solving the riddle of its involvement in cognitive impairment?. Archives of Toxicology, 2013, 87, 2031-2035.	4.2	15
103	Targeting protein–protein interactions within the cyclic AMP signaling system as a therapeutic strategy for cardiovascular disease. Future Medicinal Chemistry, 2013, 5, 451-464.	2.3	47
104	Reciprocal regulation of PKA and Rac signaling. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 8531-8536.	7.1	42
105	Phosphodiesterase-8A binds to and regulates Raf-1 kinase. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E1533-42.	7.1	49
106	Cavinâ€1/PTRF as a new substrate of the SOCS3 E3 ubiquitin ligase complex. FASEB Journal, 2013, 27, 782.1.	0.5	0
107	The A-kinase-anchoring protein AKAP-Lbc facilitates cardioprotective PKA phosphorylation of Hsp20 on Ser16. Biochemical Journal, 2012, 446, 437-443.	3.7	42
108	PKA phosphorylation of the small heat-shock protein Hsp20 enhances its cardioprotective effects. Biochemical Society Transactions, 2012, 40, 210-214.	3.4	52

#	Article	IF	CITATIONS
109	Protein kinase D in the hypertrophy pathway. Biochemical Society Transactions, 2012, 40, 287-289.	3.4	16
110	cAMP: Novel concepts in compartmentalised signalling. Seminars in Cell and Developmental Biology, 2012, 23, 181-190.	5.0	59
111	Gravin Orchestrates Protein Kinase A and β2-Adrenergic Receptor Signaling Critical for Synaptic Plasticity and Memory. Journal of Neuroscience, 2012, 32, 18137-18149.	3.6	54
112	Cyclic AMPâ€specific phosphodiesterase, PDE8A1, is activated by protein kinase Aâ€mediated phosphorylation. FEBS Letters, 2012, 586, 1631-1637.	2.8	31
113	Elucidation of a Structural Basis for the Inhibitor-Driven, p62 (SQSTM1)-Dependent Intracellular Redistribution of cAMP Phosphodiesterase-4A4 (PDE4A4). Journal of Medicinal Chemistry, 2011, 54, 3331-3347.	6.4	34
114	Integrating Cardiac PIP3 and cAMP Signaling through a PKA Anchoring Function of p110Î ³ . Molecular Cell, 2011, 42, 84-95.	9.7	174
115	Disruption of the cyclic AMP phosphodiesterase-4 (PDE4)–HSP20 complex attenuates the β-agonist induced hypertrophic response in cardiac myocytes. Journal of Molecular and Cellular Cardiology, 2011, 50, 872-883.	1.9	94
116	Phosphorylation of cAMP-specific PDE4A5 (phosphodiesterase-4A5) by MK2 (MAPKAPK2) attenuates its activation through protein kinase A phosphorylation. Biochemical Journal, 2011, 435, 755-769.	3.7	63
117	The emerging role of HSP20 as a multifunctional protective agent. Cellular Signalling, 2011, 23, 1447-1454.	3.6	67
118	β-Arrestin 1 Inhibits the GTPase-Activating Protein Function of ARHGAP21, Promoting Activation of RhoA following Angiotensin II Type 1A Receptor Stimulation. Molecular and Cellular Biology, 2011, 31, 1066-1075.	2.3	67
119	The Structure of the Human RNase H2 Complex Defines Key Interaction Interfaces Relevant to Enzyme Function and Human Disease. Journal of Biological Chemistry, 2011, 286, 10530-10539.	3.4	94
120	A Phosphodiesterase 3B-based Signaling Complex Integrates Exchange Protein Activated by cAMP 1 and Phosphatidylinositol 3-Kinase Signals in Human Arterial Endothelial Cells. Journal of Biological Chemistry, 2011, 286, 16285-16296.	3.4	46
121	Small Molecule AKAP-Protein Kinase A (PKA) Interaction Disruptors That Activate PKA Interfere with Compartmentalized cAMP Signaling in Cardiac Myocytes. Journal of Biological Chemistry, 2011, 286, 9079-9096.	3.4	92
122	Distinct functional outputs of PTEN signalling are controlled by dynamic association with β-arrestins. EMBO Journal, 2011, 30, 2557-2568.	7.8	58
123	Structure-Function Analysis of Core STRIPAK Proteins. Journal of Biological Chemistry, 2011, 286, 25065-25075.	3.4	136
124	Selective SUMO modification of cAMP-specific phosphodiesterase-4D5 (PDE4D5) regulates the functional consequences of phosphorylation by PKA and ERK. Biochemical Journal, 2010, 428, 55-65.	3.7	35
125	<i>Erythro</i> -9-(2-hydroxy-3-nonyl)adenine (EHNA) blocks differentiation and maintains the expression of pluripotency markers in human embryonic stem cells. Biochemical Journal, 2010, 432, 575-599.	3.7	6
126	Interaction with receptor for activated C-kinase 1 (RACK1) sensitizes the phosphodiesterase PDE4D5 towards hydrolysis of cAMP and activation by protein kinase C. Biochemical Journal, 2010, 432, 207-219.	3.7	28

#	Article	IF	CITATIONS
127	Identification and characterization of small-molecule ligands that maintain pluripotency of human embryonic stem cells. Biochemical Society Transactions, 2010, 38, 1058-1061.	3.4	14
128	Receptor dependent cellular uptake of synthetic low density lipoprotein by mammalian cells in serum-free tissue culture. Journal of Pharmacy and Pharmacology, 2010, 58, 1337-1342.	2.4	6
129	A Complex between FAK, RACK1, and PDE4D5 Controls Spreading Initiation and Cancer Cell Polarity. Current Biology, 2010, 20, 1086-1092.	3.9	214
130	p62 (SQSTM1) and cyclic AMP phosphodiesterase-4A4 (PDE4A4) locate to a novel, reversible protein aggregate with links to autophagy and proteasome degradation pathways. Cellular Signalling, 2010, 22, 1576-1596.	3.6	37
131	Cross Talk between Phosphatidylinositol 3-Kinase and Cyclic AMP (cAMP)-Protein Kinase A Signaling Pathways at the Level of a Protein Kinase B/β-Arrestin/cAMP Phosphodiesterase 4 Complex. Molecular and Cellular Biology, 2010, 30, 1660-1672.	2.3	61
132	Cyclic AMP Phosphodiesterase 4D (PDE4D) Tethers EPAC1 in a Vascular Endothelial Cadherin (VE-Cad)-based Signaling Complex and Controls cAMP-mediated Vascular Permeability. Journal of Biological Chemistry, 2010, 285, 33614-33622.	3.4	81
133	Evolutionarily Conserved Role of Calcineurin in Phosphodegron-Dependent Degradation of Phosphodiesterase 4D. Molecular and Cellular Biology, 2010, 30, 4379-4390.	2.3	26
134	Inferring Signaling Pathway Topologies from Multiple Perturbation Measurements of Specific Biochemical Species. Science Signaling, 2010, 3, ra20.	3.6	101
135	MEK1 Binds Directly to βArrestin1, Influencing Both Its Phosphorylation by ERK and the Timing of Its Isoprenaline-stimulated Internalization. Journal of Biological Chemistry, 2009, 284, 11425-11435.	3.4	65
136	Mdm2 directs the ubiquitination of Î'-arrestin-sequestered cAMP phosphodiesterase-4D5 Journal of Biological Chemistry, 2009, 284, 21776.	3.4	2
137	The Cardiac IKs Potassium Channel Macromolecular Complex Includes the Phosphodiesterase PDE4D3. Journal of Biological Chemistry, 2009, 284, 9140-9146.	3.4	118
138	Mdm2 Directs the Ubiquitination of β-Arrestin-sequestered cAMP Phosphodiesterase-4D5. Journal of Biological Chemistry, 2009, 284, 16170-16182.	3.4	59
139	Phosphorylation of RACK1 on Tyrosine 52 by c-Abl Is Required for Insulin-like Growth Factor I-mediated Regulation of Focal Adhesion Kinase. Journal of Biological Chemistry, 2009, 284, 20263-20274.	3.4	89
140	A scanning peptide array approach uncovers association sites within the JNK/ \hat{I}^2 arrestin signalling complex. FEBS Letters, 2009, 583, 3310-3316.	2.8	23
141	Sleep deprivation impairs cAMP signalling in the hippocampus. Nature, 2009, 461, 1122-1125.	27.8	339
142	Compartmentalized signalling: spatial regulation of cAMP by the action of compartmentalized phosphodiesterases. FEBS Journal, 2009, 276, 1790-1799.	4.7	192
143	The role of the PDE4D cAMP phosphodiesterase in the regulation of glucagonâ€like peptideâ€1 release. British Journal of Pharmacology, 2009, 157, 633-644.	5.4	50
144	In cardiac myocytes, cAMP elevation triggers the down-regulation of transcripts and promoter activity for cyclic AMP phosphodiesterase-4A10 (PDE4A10). Cellular Signalling, 2008, 20, 2071-2083.	3.6	17

#	Article	IF	CITATIONS
145	Ndel1 alters its conformation by sequestering cAMP-specific phosphodiesterase-4D3 (PDE4D3) in a manner that is dynamically regulated through Protein Kinase A (PKA). Cellular Signalling, 2008, 20, 2356-2369.	3.6	41
146	Mutations of β-arrestin 2 that limit self-association also interfere with interactions with the β2-adrenoceptor and the ERK1/2 MAPKs: implications for β2-adrenoceptor signalling via the ERK1/2 MAPKs. Biochemical Journal, 2008, 413, 51-60.	3.7	40
147	EPAC and PKA allow cAMP dual control over DNA-PK nuclear translocation. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 12791-12796.	7.1	109
148	Tyrosine 302 in RACK1 Is Essential for Insulin-like Growth Factor-I-mediated Competitive Binding of PP2A and β1 Integrin and for Tumor Cell Proliferation and Migration. Journal of Biological Chemistry, 2008, 283, 22952-22961.	3.4	67
149	Protein Kinase A Type I and Type II Define Distinct Intracellular Signaling Compartments. Circulation Research, 2008, 103, 836-844.	4.5	185
150	Human PDE4A8, a novel brain-expressed PDE4 cAMP-specific phosphodiesterase that has undergone rapid evolutionary change. Biochemical Journal, 2008, 411, 361-369.	3.7	26
151	cAMP-Specific Phosphodiesterase-4 Enzymes in the Cardiovascular System. Circulation Research, 2007, 100, 950-966.	4.5	283
152	Compartmentalization of cAMP-Dependent Signaling by Phosphodiesterase-4D Is Involved in the Regulation of Vasopressin-Mediated Water Reabsorption in Renal Principal Cells. Journal of the American Society of Nephrology: JASN, 2007, 18, 199-212.	6.1	134
153	Dynamic Regulation, Desensitization, and Cross-talk in Discrete Subcellular Microdomains during β2-Adrenoceptor and Prostanoid Receptor cAMP Signaling. Journal of Biological Chemistry, 2007, 282, 34235-34249.	3.4	51
154	PDE4B5, a Novel, Super-Short, Brain-Specific cAMP Phosphodiesterase-4 Variant Whose Isoform-Specifying N-Terminal Region Is Identical to That of cAMP Phosphodiesterase-4D6 (PDE4D6). Journal of Pharmacology and Experimental Therapeutics, 2007, 322, 600-609.	2.5	65
155	Mapping binding sites for the PDE4D5 cAMP-specific phosphodiesterase to the N- and C-domains of β-arrestin using spot-immobilized peptide arrays. Biochemical Journal, 2007, 404, 71-80.	3.7	88
156	cAMP-specific phosphodiesterase-4D5 (PDE4D5) provides a paradigm for understanding the unique non-redundant roles that PDE4 isoforms play in shaping compartmentalized cAMP cell signalling. Biochemical Society Transactions, 2007, 35, 938-941.	3.4	39
157	p75 neurotrophin receptor regulates tissue fibrosis through inhibition of plasminogen activation via a PDE4/cAMP/PKA pathway. Journal of Cell Biology, 2007, 177, 1119-1132.	5.2	116
158	1H NMR structural and functional characterisation of a cAMP-specific phosphodiesterase-4D5 (PDE4D5) N-terminal region peptide that disrupts PDE4D5 interaction with the signalling scaffold proteins, βarrestin and RACK1. Cellular Signalling, 2007, 19, 2612-2624.	3.6	53
159	Reduced PDE4 expression and activity contributes to enhanced catecholamine-induced cAMP accumulation in adipocytes from FOXC2 transgenic mice. FEBS Letters, 2006, 580, 4126-4130.	2.8	20
160	Phosphodiesterase-4 gates the ability of protein kinase A to phosphorylate G-protein receptor kinase-2 and influence its translocation. Biochemical Society Transactions, 2006, 34, 474-475.	3.4	7
161	cAMP phosphodiesterase-4A1 (PDE4A1) has provided the paradigm for the intracellular targeting of phosphodiesterases, a process that underpins compartmentalized cAMP signalling. Biochemical Society Transactions, 2006, 34, 504-509.	3.4	33
162	Scanning peptide array analyses identify overlapping binding sites for the signalling scaffold proteins, β-arrestin and RACK1, in cAMP-specific phosphodiesterase PDE4D5. Biochemical Journal, 2006, 398, 23-36.	3.7	144

#	Article	IF	CITATIONS
163	Phosphodiesterase-4 influences the PKA phosphorylation status and membrane translocation of G-protein receptor kinase 2 (GRK2) in HEK-293β2 cells and cardiac myocytes. Biochemical Journal, 2006, 394, 427-435.	3.7	35
164	Spatial organisation of AKAP18 and PDE4 isoforms in renal collecting duct principal cells. European Journal of Cell Biology, 2006, 85, 673-678.	3.6	52
165	PGE1 stimulation of HEK293 cells generates multiple contiguous domains with different [cAMP]: role of compartmentalized phosphodiesterases. Journal of Cell Biology, 2006, 175, 441-451.	5.2	171
166	β-Arrestin-recruited phosphodiesterase-4 desensitizes the AKAP79/PKA-mediated switching of β2-adrenoceptor signalling to activation of ERK. Biochemical Society Transactions, 2005, 33, 1333.	3.4	33
167	Arrestin times for compartmentalised cAMP signalling and phosphodiesterase-4 enzymes. Current Opinion in Cell Biology, 2005, 17, 129-134.	5.4	120
168	Investigation of Extracellular Signal-Regulated Kinase 2 Mitogen-Activated Protein Kinase Phosphorylation and Regulation of Activity of PDE4 Cyclic Adenosine Monophosphate-Specific Phosphodiesterases. , 2005, 307, 225-238.		12
169	RNA Silencing Identifies PDE4D5 as the Functionally Relevant cAMP Phosphodiesterase Interacting with βArrestin to Control the Protein Kinase A/AKAP79-mediated Switching of the β2-Adrenergic Receptor to Activation of ERK in HEK293B2 Cells. Journal of Biological Chemistry, 2005, 280, 33178-33189.	3.4	185
170	Compartmentalisation of phosphodiesterases and protein kinase A: opposites attract. FEBS Letters, 2005, 579, 3264-3270.	2.8	186
171	DISC1 and PDE4B Are Interacting Genetic Factors in Schizophrenia That Regulate cAMP Signaling. Science, 2005, 310, 1187-1191.	12.6	605
172	Differential expression of PDE4 cAMP phosphodiesterase isoforms in inflammatory cells of smokers with COPD, smokers without COPD, and nonsmokers. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2004, 287, L332-L343.	2.9	100
173	TCR- and CD28-Mediated Recruitment of Phosphodiesterase 4 to Lipid Rafts Potentiates TCR Signaling. Journal of Immunology, 2004, 173, 4847-4858.	0.8	123
174	Remodelling of the PDE4 cAMP phosphodiesterase isoform profile upon monocyteâ€macrophage differentiation of human U937 cells. British Journal of Pharmacology, 2004, 142, 339-351.	5.4	81
175	Expression, intracellular distribution and basis for lack of catalytic activity of the PDE4A7 isoform encoded by the human PDE4A cAMP-specific phosphodiesterase gene. Biochemical Journal, 2004, 380, 371-384.	3.7	24
176	Occupancy of the catalytic site of the PDE4A4 cyclic AMP phosphodiesterase by rolipram triggers the dynamic redistribution of this specific isoform in living cells through a cyclic AMP independent process. Cellular Signalling, 2003, 15, 955-971.	3.6	37
177	The Unique Amino-terminal Region of the PDE4D5 cAMP Phosphodiesterase Isoform Confers Preferential Interaction with β-Arrestins. Journal of Biological Chemistry, 2003, 278, 49230-49238.	3.4	97
178	Attenuation of the Activity of the cAMP-specific Phosphodiesterase PDE4A5 by Interaction with the Immunophilin XAP2. Journal of Biological Chemistry, 2003, 278, 33351-33363.	3.4	149
179	Â-Arrestin-mediated PDE4 cAMP phosphodiesterase recruitment regulates Â-adrenoceptor switching from Gs to Gi. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 940-945.	7.1	356
180	Molecular cloning and subcellular distribution of the novel PDE4B4 cAMP-specific phosphodiesterase isoform. Biochemical Journal, 2003, 370, 429-438.	3.7	52

#	Article	IF	CITATIONS
181	TAPAS-1, a Novel Microdomain within the Unique N-terminal Region of the PDE4A1 cAMP-specific Phosphodiesterase That Allows Rapid, Ca2+-triggered Membrane Association with Selectivity for Interaction with Phosphatidic Acid. Journal of Biological Chemistry, 2002, 277, 28298-28309.	3.4	145
182	Mixed species biofilms of Candida albicans and Staphylococcus epidermidis. Journal of Medical Microbiology, 2002, 51, 344-349.	1.8	310
183	Targeting of Cyclic AMP Degradation to beta 2-Adrenergic Receptors by beta -Arrestins. Science, 2002, 298, 834-836.	12.6	476
184	Long PDE4 cAMP specific phosphodiesterases are activated by protein kinase A-mediated phosphorylation of a single serine residue in Upstream Conserved Region 1 (UCR1). British Journal of Pharmacology, 2002, 136, 421-433.	5.4	229
185	Phorbol 12-myristate 13-acetate Triggers the Protein Kinase A-Mediated Phosphorylation and Activation of the PDE4D5 cAMP Phosphodiesterase in Human Aortic Smooth Muscle Cells through a Route Involving Extracellular Signal Regulated Kinase (ERK). Molecular Pharmacology, 2001, 60, 1100-1111.	2.3	71
186	Sub-family selective actions in the ability of Erk2 MAP kinase to phosphorylate and regulate the activity of PDE4 cyclic AMP-specific phosphodiesterases. British Journal of Pharmacology, 2000, 131, 811-819.	5.4	146
187	ERK2 Mitogen-activated Protein Kinase Binding, Phosphorylation, and Regulation of the PDE4D cAMP-specific Phosphodiesterases. Journal of Biological Chemistry, 2000, 275, 16609-16617.	3.4	215
188	Matrix polymers of Candida biofilms and their possible role in biofilm resistance to antifungal agents. Journal of Antimicrobial Chemotherapy, 2000, 46, 397-403.	3.0	315
189	Role of dimorphism in the development of Candida albicans biofilms. Journal of Medical Microbiology, 1999, 48, 671-679.	1.8	253
190	The MAP kinase ERK2 inhibits the cyclic AMP-specific phosphodiesterase HSPDE4D3 by phosphorylating it at Ser579. EMBO Journal, 1999, 18, 893-903.	7.8	269
191	Iron-Limited Biofilms of Candida albicans and Their Susceptibility to Amphotericin B. Antimicrobial Agents and Chemotherapy, 1998, 42, 2146-2149.	3.2	87
192	Production of extracellular matrix by Candida albicans biofilms. Journal of Medical Microbiology, 1998, 47, 253-256.	1.8	164
193	A High-fat Diet Promotes Depression-like Behavior in Mice by Suppressing Hypothalamic PKA Signaling. SSRN Electronic Journal, 0, , .	0.4	2