
Santiago Fajardo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8361875/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fundamentals and advances in magnesium alloy corrosion. Progress in Materials Science, 2017, 89, 92-193.	32.8	1,321
2	Effect of impurities on the enhanced catalytic activity for hydrogen evolution in high purity magnesium. Electrochimica Acta, 2015, 165, 255-267.	5.2	149
3	Electrochemical study on the corrosion behaviour of a new low-nickel stainless steel in carbonated alkaline solution in the presence of chlorides. Electrochimica Acta, 2014, 129, 160-170.	5.2	129
4	The Source of Anodic Hydrogen Evolution on Ultra High Purity Magnesium. Electrochimica Acta, 2016, 212, 510-521.	5.2	86
5	Introductory lecture on corrosion chemistry: a focus on anodic hydrogen evolution on Al and Mg. Faraday Discussions, 2015, 180, 11-33.	3.2	76
6	Gravimetric Method for Hydrogen Evolution Measurements on Dissolving Magnesium. Journal of the Electrochemical Society, 2015, 162, C693-C701.	2.9	74
7	Corrosion inhibition mechanism of phosphates for early-age reinforced mortar in the presence of chlorides. Cement and Concrete Composites, 2015, 61, 1-6.	10.7	72
8	Comparative study of three sodium phosphates as corrosion inhibitors for steel reinforcements. Cement and Concrete Composites, 2013, 43, 31-38.	10.7	71
9	Effect of Mn additions on the corrosion behaviour of TWIP Fe-Mn-Al-Si austenitic steel in chloride solution. Corrosion Science, 2019, 154, 246-253.	6.6	71
10	Corrosion behaviour of a new low-nickel stainless steel embedded in activated fly ash mortars. Cement and Concrete Composites, 2011, 33, 644-652.	10.7	65
11	Pitting corrosion inhibition of 304 stainless steel in NaCl solution by three newly synthesized carboxylic Schiff bases. Corrosion Science, 2019, 160, 108130.	6.6	59
12	Corrosion behaviour of a new low-nickel stainless steel in saturated calcium hydroxide solution. Construction and Building Materials, 2011, 25, 4190-4196.	7.2	58
13	Electrochemical characterization of organic coatings for protection of historic steel artefacts. Journal of Solid State Electrochemistry, 2010, 14, 453-463.	2.5	53
14	Understanding the enhanced rates of hydrogen evolution on dissolving magnesium. Electrochemistry Communications, 2019, 104, 106482.	4.7	48
15	Low-nickel stainless steel passive film in simulated concrete pore solution: A SIMS study. Applied Surface Science, 2010, 256, 6139-6143.	6.1	46
16	Copper deterioration: causes, diagnosis and risk minimisation. International Materials Reviews, 2010, 55, 99-127.	19.3	42
17	Corrosion behaviour of a Low Ni austenitic stainless steel in carbonated chloride-polluted alkali-activated fly ash mortar. Cement and Concrete Research, 2014, 55, 49-58.	11.0	41
18	Organic corrosion inhibitor mixtures for reinforcing steel embedded in carbonated alkali-activated fly ash mortar. Construction and Building Materials, 2012, 35, 30-37.	7.2	38

Santiago Fajardo

#	Article	IF	CITATIONS
19	The role of the beta-Mg17Al12 phase on the anomalous hydrogen evolution and anodic dissolution of AZ magnesium alloys. Corrosion Science, 2020, 165, 108384.	6.6	38
20	Low energy SIMS characterization of passive oxide films formed on a low-nickel stainless steel in alkaline media. Applied Surface Science, 2014, 288, 423-429.	6.1	37
21	Anomalous hydrogen evolution on AZ31, AZ61 and AZ91 magnesium alloys in unbuffered sodium chloride solution. Corrosion Science, 2019, 146, 163-171.	6.6	37
22	A kinetic model explaining the enhanced rates of hydrogen evolution on anodically polarized magnesium in aqueous environments. Electrochemistry Communications, 2017, 84, 36-39.	4.7	35
23	A prediction study of hydroxyapatite entrapment ability in concrete. Construction and Building Materials, 2010, 24, 2646-2649.	7.2	32
24	Corrosion rate and corrosion product characterisation using Raman spectroscopy for steel embedded in chloride polluted fly ash mortar. Materials and Corrosion - Werkstoffe Und Korrosion, 2013, 64, 372-380.	1.5	32
25	The Evolution of Anodic Hydrogen on High Purity Magnesium in Acidic Buffer Solution. Corrosion, 2017, 73, 482-493.	1.1	31
26	Kinetic Study of Formate Compounds Developed on Copper in the Presence of Formic Acid Vapor. Journal of the Electrochemical Society, 2008, 155, C578.	2.9	27
27	Applications of electrokinetic phenomena in materials science. Journal of Solid State Electrochemistry, 2014, 18, 293-307.	2.5	19
28	Reaction between sodium monofluorophosphate and portlandite and impact on steel reinforcement corrosion inhibition. Construction and Building Materials, 2012, 37, 46-50.	7.2	18
29	Anodic activation of Mg in the presence of In3+ ions in dilute sodium chloride solution. Electrochimica Acta, 2019, 293, 199-210.	5.2	17
30	An XPS study of tarnishing of a gold mask from a pre-Columbian culture. Corrosion Science, 2008, 50, 1785-1788.	6.6	16
31	Experimental Apparent Stern–Geary Coefficients for AZ31B Mg Alloy in Physiological Body Fluids for Accurate Corrosion Rate Determination. Metals, 2021, 11, 391.	2.3	16
32	Corrosion resistance of pulsed laser modified AZ31 Mg alloy surfaces. Journal of Magnesium and Alloys, 2022, 10, 756-768.	11.9	16
33	Investigating the Effect of Ferrous lons on the Anomalous Hydrogen Evolution on Magnesium in Acidic Ferrous Chloride Solution. Journal of the Electrochemical Society, 2018, 165, C916-C925.	2.9	15
34	Influence of chromium on the passivity of thermo-mechanically processed high-Mn TWIP steels. Applied Surface Science, 2020, 513, 145852.	6.1	15
35	Corrosion behaviour of resistance-spot-welded high-Mn austenitic TWIP steel. Corrosion Engineering Science and Technology, 2021, 56, 50-59.	1.4	12
36	A Critical Review of the Application of Electrochemical Techniques for Studying Corrosion of Mg and Mg Alloys: Opportunities and Challenges. , 0, , .		11

Santiago Fajardo

#	Article	IF	CITATIONS
37	pH evolution around the AZ31/Steel galvanic couple under gelled-electrolytes: A numerical and experimental study. Corrosion Science, 2021, 178, 109061.	6.6	10
38	Corrosion of Steel Embedded in Fly Ash Mortar Using a Transmission Line Model. Journal of the Electrochemical Society, 2014, 161, E3158-E3164.	2.9	8
39	Corrosion Behaviour of a New Low-Nickel Stainless Steel Reinforcement: A Study in Simulated Pore Solutions and in Fly Ash Mortars. International Journal of Corrosion, 2012, 2012, 1-8.	1.1	4
40	Effect of Magnesium Addition and High Energy Processing on the Degradation Behavior of Iron Powder in Modified Hanks' Solution for Bioabsorbable Implant Applications. Metals, 2022, 12, 78.	2.3	2
41	Monitoring steel microbiologically induced corrosion using a new electrochemical cell. Materials and Corrosion - Werkstoffe Und Korrosion, 2015, 66, 465-471.	1.5	1
42	Titanium Anodization Efficiency Through Real-Time Gravimetric Measurement of Oxygen Evolution. Journal of the Electrochemical Society, 2020, 167, 061507.	2.9	1
43	Aspectos cin $ ilde{A}$ ©ticos de la corrosi $ ilde{A}$ ³ n y fen $ ilde{A}$ ³ menos de pasividad. , 0, , 11-32.		1
44	Analysis of Copper Diffusion Processes Using Impedance Data. ECS Transactions, 2008, 15, 215-219.	0.5	0