Carla I P S Antonio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/836041/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Defenceâ€related pathways, phytohormones and primary metabolism are key players in kiwifruit plant tolerance to <i>Pseudomonas syringae</i> pv. <i>actinidiae</i> . Plant, Cell and Environment, 2022, 45, 528-541.	5.7	15
2	Stem metabolism under drought stress – a paradox of increasing respiratory substrates and decreasing respiratory rates. Physiologia Plantarum, 2021, 172, 391-404.	5.2	12
3	Mass spectrometryâ€based forest tree metabolomics. Mass Spectrometry Reviews, 2021, 40, 126-157.	5.4	25
4	Pinus pinaster Early Hormonal Defence Responses to Pinewood Nematode (Bursaphelenchus) Tj ETQq0 0 0 rgBT /	Overlock	10 Tf 50 622
5	Primary Metabolite Profile Changes in Coffea spp. Promoted by Single and Combined Exposure to Drought and Elevated CO2 Concentration. Metabolites, 2021, 11, 427.	2.9	15
6	Will Casuarina glauca Stress Resilience Be Maintained in the Face of Climate Change?. Metabolites, 2021, 11, 593.	2.9	3

	2021, 11, 593.		
7	Primary Metabolite Adjustments Associated With Pinewood Nematode Resistance in Pinus pinaster. Frontiers in Plant Science, 2021, 12, 777681.	3.6	6
8	Drought response of cowpea (Vigna unguiculata (L.) Walp.) landraces at leaf physiological and metabolite profile levels. Environmental and Experimental Botany, 2020, 175, 104060.	4.2	24
9	Salt-stress secondary metabolite signatures involved in the ability of Casuarina glauca to mitigate oxidative stress. Environmental and Experimental Botany, 2019, 166, 103808.	4.2	20
10	Distinctive phytohormonal and metabolic profiles of Arabidopsis thaliana and Eutrema salsugineum under similar soil drying. Planta, 2019, 249, 1417-1433.	3.2	5
11	Pinus Susceptibility to Pitch Canker Triggers Specific Physiological Responses in Symptomatic Plants: An Integrated Approach. Frontiers in Plant Science, 2019, 10, 509.	3.6	18
12	Activity in the Arbuscular Mycorrhizal Hyphosphere Warning Neighbouring Plants. Frontiers in Plant Science, 2019, 10, 511.	3.6	8
13	Experimental Design and Sample Preparation in Forest Tree Metabolomics. Metabolites, 2019, 9, 285.	2.9	29
14	A molecular approach to droughtâ€induced reduction in leaf CO 2 exchange in droughtâ€resistant Quercus ilex. Physiologia Plantarum, 2018, 162, 394-408.	5.2	18
15	Aphid infestation in the phyllosphere affects primary metabolic profiles in the arbuscular mycorrhizal hyphosphere. Scientific Reports, 2018, 8, 14442.	3.3	13
16	Standard Key Steps in Mass Spectrometry-Based Plant Metabolomics Experiments: Instrument Performance and Analytical Method Validation. Methods in Molecular Biology, 2018, 1778, 19-31.	0.9	5
17	Quantification of Low-Abundant Phosphorylated Carbohydrates Using HILIC-QqQ-MS/MS. Methods in Molecular Biology, 2018, 1778, 71-86.	0.9	2

	Quantification and structural characterization of raffinose family oligosaccharides in Casuarina		
18	glauca plant tissues by porous graphitic carbon electrospray quadrupole ion trap mass spectrometry.	1.5	13
	International Journal of Mass Spectrometry, 2017, 413, 127-134.		

CARLA I P S ANTONIO

#	Article	IF	CITATIONS
19	Porous Graphitic Carbon Liquid Chromatography–Mass Spectrometry Analysis of Drought Stress-Responsive Raffinose Family Oligosaccharides in Plant Tissues. Methods in Molecular Biology, 2017, 1631, 279-293.	0.9	1
20	GC-TOF-MS analysis reveals salt stress-responsive primary metabolites in Casuarina glauca tissues. Metabolomics, 2017, 13, 1.	3.0	36
21	Cowpea (Vigna unguiculata L. Walp.) Metabolomics: Osmoprotection as a Physiological Strategy for Drought Stress Resistance and Improved Yield. Frontiers in Plant Science, 2017, 8, 586.	3.6	130
22	Characterization of the Primary Metabolome of Brachystegia boehmii and Colophospermum mopane under Different Fire Regimes in Miombo and Mopane African Woodlands. Frontiers in Plant Science, 2017, 8, 2130.	3.6	7
23	Analysis of low abundant trehalose-6-phosphate and related metabolites in Medicago truncatula by hydrophilic interaction liquid chromatography–triple quadrupole mass spectrometry. Journal of Chromatography A, 2016, 1477, 30-38.	3.7	7
24	Genomics of Drought. , 2016, , 85-135.		4
25	Mass spectrometry as a quantitative tool in plant metabolomics. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374, 20150370.	3.4	98
26	Drought Stress Tolerance in Plants: Insights from Metabolomics. , 2016, , 187-216.		18
27	Mass spectrometryâ€based plant metabolomics: Metabolite responses to abiotic stress. Mass Spectrometry Reviews, 2016, 35, 620-649.	5.4	254
28	Regulation of Primary Metabolism in Response to Low Oxygen Availability as Revealed by Carbon and Nitrogen Isotope Redistribution. Plant Physiology, 2016, 170, 43-56.	4.8	105
29	An integrated approach to understand the mechanisms underlying salt stress tolerance in Casuarina glauca and its relation with nitrogen-fixing Frankia Thr. Symbiosis, 2016, 70, 111-116.	2.3	13
30	Application of Carbonaceous Materials in Separation Science. RSC Green Chemistry, 2015, , 103-126.	0.1	3
31	Metabolic efficiency underpins performance trade-offs in growth of Arabidopsis thaliana. Nature Communications, 2014, 5, 3537.	12.8	23
32	Oxygen Consumption Under Hypoxic Conditions. Plant Cell Monographs, 2014, , 185-208.	0.4	4
33	Molecular mechanisms of desiccation tolerance in the resurrection glacial relic Haberlea rhodopensis. Cellular and Molecular Life Sciences, 2013, 70, 689-709.	5.4	168
34	Analysis of the Interface between Primary and Secondary Metabolism in Catharanthus roseus Cell Cultures Using 13C-Stable Isotope Feeding and Coupled Mass Spectrometry. Molecular Plant, 2013, 6, 581-584.	8.3	16
35	Impact of the Carbon and Nitrogen Supply on Relationships and Connectivity between Metabolism and Biomass in a Broad Panel of Arabidopsis Accessions Â. Plant Physiology, 2013, 162, 347-363.	4.8	87
36	Structured patterns in geographic variability of metabolic phenotypes in Arabidopsis thaliana. Nature Communications, 2012, 3, 1319.	12.8	31

CARLA I P S ANTONIO

7

#	Article	IF	CITATIONS
37	<i>JUNGBRUNNEN1</i> , a Reactive Oxygen Species–Responsive NAC Transcription Factor, Regulates Longevity in <i>Arabidopsis</i> . Plant Cell, 2012, 24, 482-506.	6.6	512
38	Initial water deficit effects on Lupinus albus photosynthetic performance, carbon metabolism, and hormonal balance: metabolic reorganization prior to early stress responses. Journal of Experimental Botany, 2011, 62, 4965-4974.	4.8	33
39	Polysaccharideâ€Đerived Carbons for Polar Analyte Separations. Advanced Functional Materials, 2010, 20, 1834-1841.	14.9	82
40	Metabolomic applications of HILIC–LC–MS. Mass Spectrometry Reviews, 2010, 29, 671-684.	5.4	151
41	Hydrophilic interaction chromatography/electrospray mass spectrometry analysis of carbohydrateâ€related metabolites from <i>Arabidopsis thaliana</i> leaf tissue. Rapid Communications in Mass Spectrometry, 2008, 22, 1399-1407.	1.5	95
42	Analysis of carbohydrates in Lupinus albus stems on imposition of water deficit, using porous graphitic carbon liquid chromatography-electrospray ionization mass spectrometry. Journal of Chromatography A, 2008, 1187, 111-118.	3.7	58
43	Erratum to "Analysis of carbohydrates in Lupinus albus stems on imposition of water deficit, using porous graphitic carbon liquid chromatography–electrospray ionization mass spectrometry―[J. Chromatogr. A 1187 (2008) 111–118]. Journal of Chromatography A, 2008, 1201, 132.	3.7	3
44	Quantification of sugars and sugar phosphates in Arabidopsis thaliana tissues using porous graphitic carbon liquid chromatography-electrospray ionization mass spectrometry. Journal of Chromatography A, 2007, 1172, 170-178.	3.7	85
45	Mass Spectrometry in Glycobiology. RSC Biomolecular Sciences, 2007, , 210-233.	0.4	1

Plant Metabolomics in a Changing World: Metabolite Responses to Abiotic Stress Combinations. , 0, , .