Alisa Clyne

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8359863/publications.pdf

Version: 2024-02-01

623734 610901 1,168 25 14 24 citations g-index h-index papers 25 25 25 2386 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Endothelial Cell Proliferation is Enhanced by Low Dose Non-Thermal Plasma Through Fibroblast Growth Factor-2 Release. Annals of Biomedical Engineering, 2010, 38, 748-757.	2.5	275
2	Dextran and Polymer Polyethylene Glycol (PEG) Coating Reduce Both 5 and 30 nm Iron Oxide Nanoparticle Cytotoxicity in 2D and 3D Cell Culture. International Journal of Molecular Sciences, 2012, 13, 5554-5570.	4.1	252
3	Superparamagnetic iron oxide nanoparticles change endothelial cell morphology and mechanics via reactive oxygen species formation. Journal of Biomedical Materials Research - Part A, 2011, 96A, 186-195.	4.0	154
4	Hydroxyl Radical and Hydrogen Peroxide are Primarily Responsible for Dielectric Barrier Discharge Plasmaâ€Induced Angiogenesis. Plasma Processes and Polymers, 2011, 8, 1154-1164.	3.0	80
5	Hypo- and Hyperglycemia Impair Endothelial Cell Actin Alignment and Nitric Oxide Synthase Activation in Response to Shear Stress. PLoS ONE, 2013, 8, e66176.	2.5	55
6	Glycated collagen alters endothelial cell actin alignment and nitric oxide release in response to fluid shear stress. Journal of Biomechanics, 2011, 44, 1927-1935.	2.1	48
7	Sex differences in the blood–brain barrier and neurodegenerative diseases. APL Bioengineering, 2021, 5, 011509.	6.2	46
8	Endothelial response to glucose: dysfunction, metabolism, and transport. Biochemical Society Transactions, 2021, 49, 313-325.	3.4	37
9	Endothelial directed collective migration depends on substrate stiffness via localized myosin contractility and cell-matrix interactions. Journal of Biomechanics, 2016, 49, 1369-1380.	2.1	31
10	An inverted dielectrophoretic device for analysis of attached single cell mechanics. Lab on A Chip, 2016, 16, 561-573.	6.0	30
11	Biofabrication strategies for creating microvascular complexity. Biofabrication, 2019, 11, 032001.	7.1	30
12	A Simplified Implementation of Edge Detection in MATLAB is Faster and More Sensitive than Fast Fourier Transform for Actin Fiber Alignment Quantification. Microscopy and Microanalysis, 2011, 17, 156-166.	0.4	19
13	Elevated fibroblast growth factorâ€2 increases tumor necrosis factorâ€Î± induced endothelial cell death in high glucose. Journal of Cellular Physiology, 2008, 217, 86-92.	4.1	17
14	Glycated collagen and altered glucose increase endothelial cell adhesion strength. Journal of Cellular Physiology, 2013, 228, 1727-1736.	4.1	14
15	Glycated Collagen Decreased Endothelial Cell Fibronectin Alignment in Response to Cyclic Stretch Via Interruption of Actin Alignment. Journal of Biomechanical Engineering, 2014, 136, 101010.	1.3	12
16	13C Metabolic Flux Analysis Indicates Endothelial Cells Attenuate Metabolic Perturbations by Modulating TCA Activity. Metabolites, 2021, 11, 226.	2.9	12
17	Laminar Flow on Endothelial Cells Suppresses eNOS O-GlcNAcylation to Promote eNOS Activity. Circulation Research, 2021, 129, 1054-1066.	4.5	11
18	Glycated Collagen Impairs Endothelial Cell Response to Cyclic Stretch. Cellular and Molecular Bioengineering, 2011, 4, 220-230.	2.1	10

#	Article	IF	Citations
19	Vascular Endothelial–Breast Epithelial Cell Coculture Model Created from 3D Cell Structures. ACS Biomaterials Science and Engineering, 2017, 3, 2999-3006.	5.2	9
20	A Computational Model of Fibroblast Growth Factor-2 Binding to Endothelial Cells Under Fluid Flow. Annals of Biomedical Engineering, 2013, 41, 154-171.	2.5	8
21	Stiff Substrates Enhance Endothelial Oxidative Stress in Response to Protein Kinase C Activation. Applied Bionics and Biomechanics, 2019, 2019, 1-14.	1.1	8
22	A simple method to align cells on 3D hydrogels using 3D printed molds. Biomedical Engineering Advances, 2021, 1, 100001.	3.8	5
23	Fluid Shear Stress and Fibroblast Growth Factor-2 Increase Endothelial Cell-Associated Vitronectin. Applied Bionics and Biomechanics, 2017, 2017, 1-12.	1.1	4
24	Fibroblast growth factor-2 did not restore plasminogen system activity in endothelial cells on glycated collagen. Biochemistry and Biophysics Reports, 2015, 4, 104-110.	1.3	1
25	Cell–Substrate Interactions. , 2015, , 83-98.		O